The Biodiversity–Biomass Relationship of Aquatic Macrophytes Is Regulated by Water Depth: A Case Study of a Shallow Mesotrophic Lake in China

Ma, Fei and Yang, Lei and Lv, Tian and Zuo, Zhenjun and Zhao, Haocun and Fan, Shufeng and Liu, Chunhua and Yu, Dan (2021) The Biodiversity–Biomass Relationship of Aquatic Macrophytes Is Regulated by Water Depth: A Case Study of a Shallow Mesotrophic Lake in China. Frontiers in Ecology and Evolution, 9. ISSN 2296-701X

[thumbnail of pubmed-zip/versions/1/package-entries/fevo-09-650001/fevo-09-650001.pdf] Text
pubmed-zip/versions/1/package-entries/fevo-09-650001/fevo-09-650001.pdf - Published Version

Download (4MB)

Abstract

The relationship between biodiversity and productivity (or biomass production) (BPR) has been a popular topic in macroecology and debated for decades. However, this relationship is poorly understood in macrophyte communities, and the mechanism of the BPR pattern of the aquatic macrophyte community is not clear. We investigated 78 aquatic macrophyte communities in a shallow mesotrophic freshwater lake in the middle and lower reaches of the Yangtze River in China. We analyzed the relationship between biodiversity (species richness, diversity, and evenness indices) and community biomass, and the effects of water environments and interspecific interactions on biodiversity–biomass patterns. Unimodal patterns between community biomass and diversity indices instead of evenness indices are shown, and these indicate the importance of both the number and abundance of species when studying biodiversity–biomass patterns under mesotrophic conditions. These patterns were moderated by species identity biologically and water depth environmentally. However, water depth determined the distribution and growth of species with different life-forms as well as species identities through environmental filtering. These results demonstrate that water depth regulates the biodiversity–biomass pattern of the aquatic macrophyte community as a result of its effect on species identity and species distribution. Our study may provide useful information for conservation and restoration of macrophyte vegetation in shallow lakes through matching water depth and species or life-form combinations properly to reach high ecosystem functions and services.

Item Type: Article
Subjects: Article Paper Librarian > Multidisciplinary
Depositing User: Unnamed user with email support@article.paperlibrarian.com
Date Deposited: 11 Oct 2023 05:30
Last Modified: 11 Oct 2023 05:30
URI: http://editor.journal7sub.com/id/eprint/1443

Actions (login required)

View Item
View Item