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Background: Ischemic stroke is a significant global health issue, imposing
substantial social and economic burdens. Carotid artery plaques (CAP) serve as
an important risk factor for stroke, and early screening can effectively reduce
stroke incidence. However, China lacks nationwide data on carotid artery plaques.
Machine learning (ML) can offer an economically efficient screening method. This
study aimed to develop ML models using routine health examinations and blood
markers to predict the occurrence of carotid artery plaques.

Methods: This study included data from 5,211 participants aged 18–70,
encompassing health check-ups and biochemical indicators. Among them,
1,164 participants were diagnosed with carotid artery plaques through carotid
ultrasound. We constructed six ML models by employing feature selection with
elastic net regression, selecting 13 indicators. Model performance was evaluated
using accuracy, sensitivity, specificity, Positive Predictive Value (PPV), Negative
Predictive Value (NPV), F1 score, kappa value, and Area Under the Curve (AUC)
value. Feature importance was assessed by calculating the root mean square error
(RMSE) loss after permutations for each variable in every model.

Results: Among all six ML models, LightGBM achieved the highest accuracy at
91.8%. Feature importance analysis revealed that age, Low-Density Lipoprotein
Cholesterol (LDL-c), and systolic blood pressure were important predictive factors
in the models.

Conclusion: LightGBM can effectively predict the occurrence of carotid artery
plaques using demographic information, physical examination data and
biochemistry data.
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1 Introduction

2019 Global Burden of Disease Study reported that there were
approximately 101 million cases of stroke worldwide, with
approximately 6.65 million deaths attributed to stroke. Stroke
ranked as the third leading cause of death and disability-adjusted
life years globally, following neonatal diseases and ischemic heart
disease. It was also the second leading global cause of death in 2019
(GBD, 2019 Stroke Collaborators, 2021). Ischemic stroke, as one of
the major subtypes of stroke, stands out as a crucial neurovascular
cause of mortality and disability. Research suggests that by 2023, the
global number of deaths due to ischemic stroke may increase from
3.29 million in 2019 to approximately 4.9 million (Fan et al., 2023).
In 2016, China incurred an estimated $12.2 billion in hospitalization
costs for stroke, imposing a significant burden on both the economy
and healthcare resources (Qi et al., 2020).

Carotid artery plaque, as an independent risk indicator for
stroke beyond classical risk factors (Prati et al., 2008), increases
the risk of stroke by 13%–18% for every 0.1 mm increase in intima-
media thickness of the carotid artery (Lorenz et al., 2007). Up to 25%
of ischemic cerebrovascular events are attributed to carotid
atherosclerosis (Saba et al., 2022). Early screening and prevention
of carotid artery plaques can reduce the risk of stroke, thereby
mitigating its adverse impacts on individuals, families, and society.
However, China lacks a nationwide epidemiological survey on the
prevalence of carotid artery plaques. This gap may be due to carotid
ultrasound being a preventive health risk assessment rather than the
definitive diagnostic criterion for a severe illness. Hence, there’s an
urgent need to develop a cost-effective screening method for carotid
artery plaques.

With the significant improvement in computer performance,
machine learning possesses the ability to handle large-scale and
high-dimensional data, which traditional statistics may not handle
effectively. Machine learning can automatically extract complex
patterns and associations from data without the need for explicit
a priori assumptions. Through iterative optimization on vast data, it
enhances model generalization and applies to complex real-world
situations. Machine learning has already found applications in
medical diagnoses for various diseases, such as fatty liver and
diabetes (Joshi and Dhakal, 2021; Weng et al., 2023).

In previous machine learning studies related to carotid artery
plaques, most utilized convolutional neural networks based on
segmentation and texture feature extraction from carotid
ultrasound images to predict plaque properties or distinguish
plaque components. For example, Latha et al. (2021) achieved
prediction models for carotid artery plaques with accuracies of
84.21%, 88.64%, and 91.41% using decision trees, logistic
regression, and random forests, respectively, based on 22 features
extracted from carotid ultrasound images. Lekadir et al. (2017)
constructed a convolutional neural network model using
approximately 90,000 plaque images and corresponding features.
This model accurately predicted plaque components such as lipid
core, fibrous cap, and calcification areas, achieving a clinical
relevance of 0.90.

Although the models constructed based on ultrasound images
have demonstrated high predictive efficiency and plaque component
recognition ability, the manpower and material costs for widespread
screening of carotid artery plaques are high. In contrast, utilizing

physical examinations and routine biochemical indicators as
features for machine learning models offers advantages such as
convenient data collection without additional examination costs.
Therefore, the main purpose of this study is to build suitable and
highly accurate machine learning models based on these indicators
to predict plaque occurrence.

2 Materials and methods

2.1 Study data

The dataset used in this study was provided by the Health
Management Center of Xiangya Second Hospital, Central South
University, Changsha, China, and encompassed data from
8,070 patients (Figure 1). Participants aged between 18 and
70 were recruited from June 2018 to December 2020. The data
collection process meticulously avoided including any sensitive
information. The dataset was limited to 29 variables, including
health examination data, age, and blood biochemical indicators.
To ensure data integrity during the construction of machine
learning models, samples with missing data exceeding 30%
(2,285 cases) or incomplete carotid artery color ultrasound
screening (574 cases) were excluded from the dataset. For the
remaining samples with partial missing values, imputation was
performed using multiple imputation by chained equations
(Supplementary Figure S1). In this study, the diagnosis of carotid
artery plaques was based on the results of carotid artery ultrasound
imaging. According to the Chinese Health Checkup Guidelines for
Carotid Artery Ultrasonography (Chinese Society of Health
Management and Chinese Society of Ultrasound in Medicine
CSoC, 2015), released in 2015, patients are considered positive
for carotid artery plaques if the perpendicular distance between
the leading edge of the intima-lumen interface to the leading edge of
the media-adventitia interface is greater than 1.5 mm. This distance
should be larger by at least 0.5 mm compared to the surrounding
normal values, or it should exceed the surrounding normal values by
more than 50%. Additionally, patients showing localized structural
changes that protrude into the lumen are also categorized as positive
for carotid artery plaques. The ultrasound machine utilized in this
study was the GE LOGIQ E9. All diagnostic outcomes from carotid
artery ultrasound examinations were conducted by attending
physicians at our hospital’s imaging center, and they underwent
validation by experienced medical professionals.

2.2 Data processing

Feature selection stands as a pivotal process within classification
prediction models, given its profound impact on model
performance. The primary aim of feature selection is to identify
the most relevant subset of features that can significantly enhance
classification accuracy. Among the 13 feature variables listed in
Table 1, the selection of these variables is informed by several factors.
These encompass commonly used indicators with clinical
significance for predicting carotid artery plaques, the
incorporation of supplementary variables to augment feature
diversity, and the utilization of a variable selection approach
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grounded in elastic net regression. Elastic Net regression is a widely
utilized linear regression technique in feature engineering. It exhibits
insensitivity to feature scaling, enabling its adaptability to features of

varying scales without necessitating additional feature scaling
operations. This method amalgamates the attributes of Lasso
regression and Ridge regression. By incorporating both L1 and
L2 regularization terms into its loss function, it strikes a balance
between feature selection and parameter adjustment. The L1 penalty
fosters sparsity by effectively shrinking certain coefficients to zero,
thereby facilitating feature selection. Meanwhile, the L2 penalty
regulates model complexity to prevent overfitting. In scenarios
featuring multiple highly correlated features, Elastic Net
regression aptly shrinks their weights, mitigating the influence of
multicollinearity. This contributes to enhancing model stability and
generalizability. In this study, an Elastic Net regression model was
constructed. The process involved a thorough exploration of the
alpha parameter ranging from 0 to 1, with increments of 0.05. The
selection of the optimal alpha value, indicative of the best
performance, was achieved by utilizing cross-validation with
mean squared error as the performance metric. Subsequently,
based on the determined alpha value, the coefficients of the
feature variables within the Elastic Net regression model were
employed for feature selection.

We used the createDataPartition function in the caret package to
divide the training set and the test set, in which the test set accounted
for 70% of all data. Continuous variables were normalized by
subtracting the average value and dividing by the standard deviation.

In the realm of machine learning data preprocessing, the
phenomenon of class imbalance arises frequently, wherein the
count of samples within one category significantly surpasses that
in the other. This incongruity can pose challenges for machine
learning models, and its impact hinges on the relative proportions of
samples in each category. To address this concern, this study applied
a technique known as Synthetic Minority Over-sampling Technique
for Nominal Continuous (SMOTE-NC) (Chawla et al., 2002) to the
training set. This technique is specifically designed to handle the
intricacies of imbalanced class data. SMOTE-NC serves as an
extension of the Synthetic Minority Over-sampling Technique
(SMOTE), distinguished by its competence in managing both
nominal and continuous features. Within an imbalanced dataset,
the SMOTE-NC algorithm orchestrates the generation of synthetic
samples for the minority class through an oversampling mechanism
involving interpolation of existing samples. A distinctive attribute of
SMOTE-NC lies in its consideration of both continuous and
nominal features, ensuring that the resultant synthetic samples
faithfully capture the essence of the underlying data distribution.

2.3 Model building

We harnessed six prevalent classifiers to formulate a model
aimed at discerning carotid artery plaque presence.

Logistic Regression (LR) is a machine learning algorithm
specifically designed for binary classification tasks. It predicts the
likelihood of a sample belonging to a particular category by mapping
a linear combination of variables to a range between 0 and 1. LR
allows for the interpretation of variable importance through the
coefficients associated with variables in the model. Thanks to its
relatively simple model structure, LR has low computational costs
and can provide good predictive performance even with limited
training data.

FIGURE 1
Data processing flowchart. MICE, multiple imputation by chained
equations; SMOTE-NC, synthetic minority over-sampling technique
for nominal continuous.
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Support Vector Machines (SVM), a prominent machine
learning approach for binary classification, adeptly discerns
intricate boundaries within data. By strategically positioning a
hyperplane, SVM achieves optimal separation between distinct
classes while maximizing the margin between them. This strategy
ensures robust generalization to new data by prioritizing pivotal
samples—known as support vectors—that serve as anchor points for
classification decisions. The potency of SVM resides in its capacity to
accommodate complex relationships through the utilization of
kernel functions. These functions facilitate data projection into
higher-dimensional spaces, enabling linear separation even in
scenarios where the original feature space may seem inseparable.
Consequently, SVM stands as a formidable tool for distinguishing
intricate patterns across various domains.

Artificial neural networks (ANNs), a pivotal machine learning
architecture, exhibit a remarkable prowess in capturing intricate
patterns and nuances within complex datasets. Operating akin to the
intricate neural pathways of the human brain, ANNs encompass
interconnected nodes, or neurons, each processing and transmitting
information. In the realm of binary classification, ANNs navigate the
realm of uncertainty by formulating a predictive framework that can
discern whether a given sample pertains to a specific category. This
intricate process entails multiple hidden layers and adaptable weights
that iteratively adjust, culminating in a comprehensive comprehension
of the underlying relationships within the data. The distinct strength of
ANNs lies in their capacity to glean non-linear interactions and high-
order dependencies among variables. Despite their computational
demands and susceptibility to overfitting in certain scenarios, ANNs
have proven their mettle in various domains, even when confronted
with intricate classification tasks.

The Random Forest model stands as a robust machine
learning tool, with its fundamental building block being the
decision tree. Comprising multiple decision trees, each tree is
trained on a randomized subset of data to mitigate the risk of
overfitting. In the context of binary classification, the Random
Forest model plays a pivotal role. It achieves this by aggregating
the results of each decision tree’s predictions, thereby furnishing
more resilient and accurate classification forecasts. Notably, due
to its capacity to handle substantial features and samples while
effectively capturing intricate relationships among features, the
Random Forest model excels in intricate classification
predicaments.

Extreme Gradient Boosting (XGBoost) stands as a potent and
efficient machine learning algorithm extensively utilized across a
spectrum of forecasting and classification tasks. Its foundational
principle draws upon gradient boosting technology, involving
iterative training of an ensemble of weak learners (typically
decision trees), which are then amalgamated into a formidable
ensemble model. Throughout each iteration, XGBoost seeks out
novel models that yield maximal reduction in the loss function, all
while judiciously considering the model’s complexity to stave off
overfitting. In the context of binary classification, XGBoost shines
with exceptional performance. It aptly handles high-dimensional,
sparse feature spaces and achieves remarkable classification
outcomes even amidst intricate inter-feature relationships. By
optimizing split points and leaf node weights, XGBoost efficiently
captures nonlinear associations inherent in data. Furthermore,
XGBoost offers a feature importance evaluation, illuminating the
features that contribute significantly to classification, thereby aiding
feature engineering and model interpretation.

TABLE 1 Characteristics of study population.

Characteristic Absence of carotid plaques (N = 4,047) Presence of carotid plaques (N = 1,164) p-value

(Mean/number) (SD/proportion) (Mean/number) (SD/proportion)

Age 48.11 9.11 57.88 7.07 <0.001

Sex <0.001
Female 1221 30.20% 266 22.90%

Male 2826 69.80% 898 77.10%

Sp 121.23 15.77 129.49 16.58 <0.001

BMI 24.73 3.19 25.00 3.06 0.008

Fbg 5.10 1.13 5.48 1.58 <0.001

TC 4.90 0.92 5.02 1.00 <0.001

HDL-c 1.28 0.31 1.27 0.31 0.45

LDL-c 2.97 0.82 3.17 0.89 <0.001

Lp(a) 199.59 217.28 221.94 258.91 0.007

ALT 26.71 17.24 24.59 14.71 <0.001

BUN 5.13 1.24 5.56 1.36 <0.001

Cr 72.29 15.09 75.38 16.15 <0.001

UA 343.07 84.36 352.19 85.85 0.001

Sp, systolic pressure; BMI, body mass index; Fbg, fasting blood-glucose; TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; Lp(a),

lipoprotein (a); Alt, glutamic-pyruvic transaminase; BUN, blood urea nitrogen; Cr, serum creatinine; UA, serum uric acid. Data are represented as mean (SD) or number (proportion), and the

p-values are calculated using the Welch Two Sample t-test or Fisher’s exact test.
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LightGBM, or the “Light Gradient Boosting Machine,” stands as
an efficient and distributed machine learning model based on the
gradient boosting algorithm. Similar to XGBoost, it employs
iterative training of weak learners (typically decision trees), which
are then amalgamated into a potent ensemble model. However,
LightGBM has achieved substantial advancements in speed and
memory utilization through innovative techniques and optimization
strategies. In the realm of binary classification, LightGBM, akin to
the XGBoost model, shines brightly. It employs histogram-based
decision tree splitting methods, allowing for efficient handling of
large-scale and high-dimensional data. Furthermore, LightGBM
introduces the Leaf-wise growth strategy, which prioritizes
splitting leaf nodes with larger gradients to accelerate model
convergence. This renders LightGBM more efficient than
XGBoost in certain scenarios, particularly when dealing with
larger datasets.

In this study, before establishing each final machine learning
model, it was imperative to construct a hyperparameter space
encompassing a range of potential values for various
hyperparameters. This approach aimed to encompass diverse
combinations of model parameters, facilitating the quest for
optimal performance. The aggregation of this hyperparameter
space was subjected to a grid search strategy to iteratively explore
parameter values. For each parameter combination, a ten-fold cross-
validation was executed. Based on the cross-validation outcomes, the
hyperparameter set exhibiting the best performance (with optimal
AUC serving as the benchmark in this study) was chosen. All the
optimal parameters and detailed information about the device and
model construction environment can be found in Supplementary
Table S2. Subsequently, the final machine learning model was
solidified through comprehensive retraining on the entire
training set.

2.4 Model performance assessment

We evaluate the predictive capabilities of various ML models by
constructing confusion matrices and calculating metrics including
Area Under the Curve (AUC), accuracy, sensitivity, specificity,
F1 score, recall, precision, and kappa value. In this section, we
provide an overview of the diverse metrics employed to assess the
performance of machine learning models.

Accuracy serves as a pivotal assessment metric within the realm
of machine learning, signifying the ratio of accurately predicted
instances to the total number of instances. A heightened accuracy
underscores enhanced classification efficacy.

Accuracy � TP + TN( )/ TP + FP + TN + FN( ) × 100%

where TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

Sensitivity, commonly referred to as the true positive rate, stands
as a pivotal performance metric within the purview of machine
learning models. This metric quantifies the model’s competence in
correctly pinpointing individuals who yield positive test results.
Sensitivity gauges the fraction of actual positive instances that the
model accurately recognizes as positive, thereby offering insights
into the model’s aptitude for detecting true positives.

Sensitivity � TP/ TP + FN( ) × 100%

Specificity denotes the ratio of correctly identified negative cases
to the total number of negative cases. This metric serves as an
indicator of a machine learning model’s capability to accurately
recognize instances that are negative. Increased specificity
corresponds to a reduced false positive rate, thereby enhancing
the precision of the model’s negative predictions. In essence,
specificity measures the model’s effectiveness in distinguishing
true negative cases.

Specificity � TN/ TN + FP( ) × 100%

Positive Predictive Value (PPV) represents the proportion of
correctly predicted positive samples out of all samples predicted as
positive by themodel. A higher PPV indicates that the model is more
accurate when predicting the positive class, with relatively fewer
occurrences of misclassifying negative class samples as positive. This
reflects the model’s classification effectiveness.

PPV � TP/ TP + FP( ) × 100%

Negative Predictive Value (NPV) represents the proportion
of samples correctly predicted as the negative class out of all
samples predicted as the negative class by the model. NPV is
typically used to assess the model’s performance in excluding the
negative class.

NPV � TN/ TN + FN( ) × 100%

F1 score is a balanced measure that amalgamates both PPV and
sensitivity. In the context of the classification task at hand, it
delineates the model’s capability to concurrently consider both
true positive predictions and false positives, thus providing a
holistic insight into its performance.

F1 score � 2 p PPV p Sensitivity( )/ PPV + Sensitivity( )

Kappa stands as a statistical metric for agreement, encompassing
values within the range of −1 to 1. In the context of the classification
quandary being examined, kappa quantifies the level of concordance
between the outcomes predicted by the model and the factual
classification outcomes. Generally, a higher kappa value is
construed as emblematic of heightened concurrence between the
classifier’s predictions and the authentic outcomes.

Kappa � Po − Pe( )/ 1 − Pe( )
where Po signifies the observed agreement proportion between the
two classifiers, and Pe denotes the anticipated agreement proportion
stemming from chance.

Receiver Operating Characteristic (ROC) curves provide a visual
depiction of a binary classifier system’s performance. These curves
are formed by plotting the true positive rate (TPR) against the false
positive rate (FPR) across different threshold settings. An ideal
classifier boasts an ROC curve tracing through the upper left
corner of the graph, signifying high TPR and low FPR. The Area
Under the Curve (AUC) quantifies the classifier’s capacity to
differentiate between positive and negative classes.

Root Mean Square Error (RMSE) is a metric used to measure the
error between predicted values of a regression model and actual
observed values. It represents the square root of the average squared
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difference between predicted and actual values. A smaller RMSE
indicates a smaller prediction error and better fitting of the model. In
this study, RMSE after Permutations is utilized to rank the feature
importance of all models. The underlying concept involves
randomly shuffling the order of feature values and then
comparing the root mean square errors of the model on both the
original and permuted data. This method aids in assessing the
contribution of each feature to the model’s performance,
facilitating the ranking of features to determine their relative
importance.

3 Model performance assessment

3.1 Characteristics and distribution of
participants

A total of 5,211 participants were ultimately included in this
study, comprising 3,724 males and 1,487 females. Among the
participants, 1,164 individuals were diagnosed with carotid artery
plaques. Their average age was 57.88 ± 7.07 years, while those

without carotid artery plaques had an average age of 48.11 ±
9.11 years. All included variables were presented as mean (SD),
and a two-sample t-test revealed significant differences between the
two groups (Figure 2; Table 1).

3.2 Model performance

We evaluated the performance of the machine learning models
by constructing confusion matrices and ROC curves. The
consolidated confusion matrices and ROC curves for all models
are illustrated in Figures 3, 4, respectively. Through comparison of
the six constructed ML models, it was observed that LightGBM
exhibited the highest accuracy in predicting carotid artery plaques at
91.8% and boasted the highest AUC (97.23%). XGBoost closely
followed LightGBM in terms of prediction accuracy, with an AUC of
96.52%, signifying XGBoost’s + as one of the top predictive models.
Both XGBoost and LightGBM attained kappa values exceeding 70%,
suggesting strong repeatability of the models. While logistic
regression, SVM, and artificial neural network models achieved
accuracy rates above 80%, their sensitivity and kappa values were

FIGURE 2
Density distribution curves of all variables. Sp, systolic pressure; BMI, body mass index; Fbg, fasting blood-glucose; TC, total cholesterol; HDL-c,
high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; Lp(a), lipoprotein (a); Alt, glutamic-pyruvic transaminase; BUN, blood
urea nitrogen; Cr, serum creatinine; UA, serum uric acid.
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comparatively lower. This implies that despite employing SMOTE-
NC to balance the data, these three algorithms exhibited limitations
in identifying positive samples, leading to reduced repeatability of
their predictions (Table 2). Based on the results of feature
importance analysis, it was evident that age, LDL-c, and systolic
blood pressure played significant roles across the majority of the
models (Figure 5).

4 Discussion

This study encompasses clinical data from 5,211 participants
and employs six ML models, thus establishing itself as the most
extensive machine learning investigation to predict carotid artery
plaques in the Chinese population based on health examinations and
blood biochemical indicators. The findings underscore the efficacy

FIGURE 3
Confusion matrix of all models. (A) logistic regression; (B) support vector machine; (C) artificial neural network; (D) random forest; (E) light gradient
boosting machine; (F) extreme gradient boosting.
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of ML in effectively predicting the occurrence of carotid artery
plaques, with the LightGBM model emerging as the most proficient
predictor among all machine learning models. Our assessment of the
various machine learning models in the results section reveals that
not only the LightGBM model but also the XGBoost model and the
random forest model exhibit high accuracy. Moreover, all three
models boast AUC values exceeding 90%, indicating their ability to
effectively discriminate between positive and negative cases across
varying thresholds. This reflects substantial overlap in the
probability distributions of the models’ predictions for positive
and negative cases, showcasing robust classification capability.
Furthermore, the elevated Kappa values for these models denote
excellent repeatability. This is likely attributed to their shared
ensemble learning framework, wherein these models amalgamate
the predictive outcomes of multiple weak learners (decision trees) to
construct more potent models, ultimately enhancing overall
performance. It’s worth noting that both LightGBM and

XGBoost incorporate regularization mechanisms to prevent
overfitting, further enhancing their generalization capability.
These advantages position ensemble learning models, particularly
LightGBM and XGBoost, as highly accurate tools for binary
classification prediction and exemplary performers in diagnosing
a wide range of clinical conditions.

Compared to previous machine learning study (Wu et al., 2022)
that used physical examinations and biochemical indicators to
predict carotid artery plaques in the Chinese population, our
study has several advantages. Firstly, our study boasts a much
larger sample size, approximately three times larger than
previous research. Additionally, the ratio of cases to controls in
our study aligns more closely with the predicted prevalence of
carotid artery plaques in the Chinese population based on prior
research (Song et al., 2018). While this might introduce some data
imbalance issues affecting model construction, we addressed this
problem to some extent by employing SMOTE-NC for data

FIGURE 4
ROC curves of all models.

TABLE 2 Assessment of six machine learning models.

Model Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%) Kappa (%) AUC (%)

LR 81.8298 38.1089 94.3987 66.1692 84.1410 48.3636 38.2928 83.4146

SVM 80.1663 27.5072 95.3048 62.7451 82.0567 38.2470 28.5177 78.8999

ANN 80.0384 30.9456 94.1516 60.3352 82.5867 40.9091 30.3669 81.7426

RF 87.2041 56.1605 96.1285 80.6584 88.4091 66.2162 58.6334 91.3072

LightGBM 91.8746 88.2521 92.9160 78.1726 96.4927 82.9071 77.6033 97.2329

XGBoost 89.5074 88.5387 89.7858 71.3626 96.4602 79.0281 72.1388 96.5238

LR, logistic regression; SVM, support vector machine; ANN, artificial neural network; RF, random forest; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting;

PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve of test set.
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balancing. Secondly, considering the trend of a younger onset of
atherosclerosis (Libby, 2021), and recognizing carotid artery plaques
as a sentinel manifestation of atherosclerosis, we expanded the age
range for screening beyond the traditional 40 and above
demographic. Our screening population is now targeted at
individuals aged 18 to 70, providing a broader coverage. Lastly,

concerning the predictive outcomes of our models, we obtained
results that are similar to previous research using the XGBoost
model. Surprisingly, we found that LightGBM, compared to the
XGBoost model, demonstrated higher accuracy and superior
robustness. It appears that LightGBM may excel in this
predictive task.

FIGURE 5
Feature importance analysis of all models. (A) logistic regression; (B) support vectormachine; (C) artificial neural network; (D) random forest; (E) light
gradient boosting machine; (F) extreme gradient boosting. Sp, systolic pressure; BMI, body mass index; Fbg, fasting blood-glucose; TC, total cholesterol;
HDLc, high-density lipoprotein cholesterol; LDLc, low-density lipoprotein cholesterol; Lp(a), lipoprotein (a); Alt, glutamic-pyruvic transaminase; BUN,
blood urea nitrogen; Cr, serum creatinine; UA, serum uric acid.
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The Tromsø Study conducted back in the 1970s demonstrated
that the prevalence of carotid plaques increases with age, regardless
of gender (Joakimsen et al., 1999). In recent years, a small-scale
cohort study (Lu et al., 2019) utilizing high-resolution magnetic
resonance imaging for diagnosing carotid plaques confirmed that
compared to patients under 60 years old, those aged 60–75 and even
above 75 exhibited a greater annual change in carotid artery wall
volume and maximum wall area. Furthermore, it was established
that age is independently associated with the progression of carotid
plaques. Our baseline data density distribution and feature table also
reveal discernible differences in the density distribution of
individuals with and without plaques in the age variable. This
aligns with the observed highest feature importance of age across
all models in our study. The irreversible physiological process of
aging significantly impacts metabolic and physiological changes.
Signaling pathways linked to aging influence endothelial function,
smooth muscle function within blood vessels, and the structural
integrity of arterial walls. These processes render arteries more
susceptible to atherosclerosis. This foundational biomedical
perspective offers an explanation for the closely linked
relationship between advancing age and an elevated incidence of
carotid plaques. A cohort study (Lu et al., 2019) conducted on a
Chinese population suggests that the 5-year change in systolic blood
pressure is associated with the occurrence of carotid atherosclerotic
plaques. This correlation persists even after adjusting for gender,
age, smoking status, blood lipid levels, and intima-media thickness
of the carotid artery. Foundational research (Selvin et al., 2005)
indicates that the altered shear stress caused by hypertension and
increased oxidative stress can disrupt the structural integrity of the
endothelium, leading to increased vascular permeability. This, in
turn, promotes the infiltration of adhesive molecules, recruitment of
chemotactic agents to the intima, and an increase in pro-
inflammatory cytokines, ultimately contributing to the
development of atherosclerotic lesions. The conclusions from
clinical and foundational studies also indirectly support the
rationale behind the higher feature importance of systolic blood
pressure observed in this study. The extensive body of evidence from
hundreds of prospective cohort studies, Mendelian randomization
studies, and randomized trials consistently indicates a dose-
dependent, logarithmic relationship between the absolute
magnitude of LDLc (Low-Density Lipoprotein cholesterol)
exposure and ASCVD (Atherosclerotic Cardiovascular Disease)
risk. Importantly, this association is not merely correlational but
is considered to be causal (Ference et al., 2017). The prevailing
mechanistic view suggests that LDL contributes to the development
of atherosclerosis primarily through the retention of LDL beneath
the arterial intima, where it undergoes oxidative modifications,
leading to the formation of oxidized LDL (oxLDL). Macrophages
then engulf oxLDL to form foam cells, which eventually merge to
create atherosclerotic plaques (Borén et al., 2020). Carotid artery
plaques, as a significant manifestation of atherosclerosis, are also
strongly associated with elevated LDLc levels (Kim, 2021). Based on
the clinical research evidence and the underlying physiological
mechanisms mentioned above, it’s evident that in this study, age,
systolic blood pressure, and LDLc levels exhibit higher feature
importance and are well-supported by comprehensive evidence
from the field of evidence-based medicine.

This study still has several limitations. Firstly, while it included
over 5,000 samples, these samples were all from the Xiangya Second
Hospital of Central South University. The representativeness of the
population may not be as comprehensive as multicenter clinical
studies. Additionally, the model’s generalization ability across
different ethnic groups is questionable because it was validated
by using 30% of the data from all sources as the test set instead
of external data. Secondly, the ultrasound results in this study were
performed by two qualified imaging centers’ attending physicians,
and different results were determined by senior physicians. The
collected carotid plaque diagnostic results in this study were the final
results, not the individual diagnoses of different doctors. The
consistency of diagnosis by doctors cannot be evaluated through
the calculation of the kappa value. Since ultrasound diagnosis
involves subjectivity, it may have some influence on the final
diagnosis. Lastly, we only included baseline physical examination
data and blood biochemical indicators. Some personal and past
history that are often related to carotid plaques (Tsao et al., 2023),
such as smoking status (Dempsey et al., 1990), atrial fibrillation
(Chen et al., 2016), and diabetes (Yahagi et al., 2017; Gan et al.,
2019), were not included in the analysis.

5 Conclusion

In our investigation, we unveiled that ensemble learning
machine learning models, notably LightGBM, exhibit the
capability to predict the presence of carotid artery plaques using
variables such as gender, age, physical assessments, and blood
biochemical markers. This approach showcases remarkable
precision and robust repeatability. Among the 13 predictive
factors, age, systolic blood pressure, and LDLc levels emerged as
particularly influential across most models. Leveraging these
machine learning models, healthcare practitioners can assess
carotid artery plaque status even in the absence of carotid
ultrasound, relying on routine physical examinations and blood
biochemical markers. This breakthrough opens up new avenues for
primary ischemic stroke prevention. In forthcoming research, our
aim is to refine the model’s performance by gathering data from
diverse populations to enhance its applicability.
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