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Abstract: Discrete element models are being increasingly applied to model rock failure processes.
Bonded-particle models, based on circular or spherical particle systems, have been successfully used
for two decades. More recently, bonded-block models, using polygonal or polyhedral elements,
have proven to be a powerful alternative. This paper describes the basis of the application of these
models in the numerical simulation of failure in rock materials. The critical governing parameters are
identified, and their influence is discussed. The model calibration procedure based on the analysis
of laboratory tests is discussed. An application example of an underground excavation problem
is presented using a simple bonded-block model employing rigid blocks and a bilinear softening
contact model. The results show the capability of this approach to reproduce observed failure modes
involving block fractures.

Keywords: rock mechanics; rock failure analysis; discrete elements; bonded-block models; underground
works

1. Introduction

The safety assessment of underground structures in rock relies on the capability to
analyze the response of the rock mass to the processes of excavation and support installation,
as well as the effect of subsequent actions throughout its lifetime. Numerical modeling
tools have steadily progressed in the representation of the non-elastic phenomena that
govern the deformation and failure of rock masses. While equivalent-continuum models
remain an important tool in many practical engineering situations, discontinuum models
that explicitly incorporate the rock mass joints, possibly including the development of new
fractures, are an attractive tool for the simulation of failure processes.

The numerical techniques classified as Discrete Element Methods (DEMs) comprise
a wide range of formulations and computer codes, where the underlying concept is the
representation of geomaterials as systems of particles, grains or blocks. Cundall [1] pro-
posed numerical models of rigid polygonal or circular particles in which the mechanical
response was governed by the constitutive relations of the contacts between discrete bodies.
DEM models became an important tool in rock mechanics, allowing the study of complex
block systems defined by rock mass discontinuities, joints, bedding planes and faults. The
inclusion of block deformability through the use of internal finite element meshes became
common in many problems. It allowed the non-elastic behavior or the intact rock material
to be considered. An alternative approach involved the application of the discontinuum
concept at a finer scale in order to analyze the internal behavior of the rock blocks [2]. The
study of rock fracture by means of “Bonded-particle models”, composed of assemblies
of circular or spherical particles, became a key investigation topic, allowing the simula-
tion of complex responses of rock by means of relatively simple constitutive relations at
the contact level [3]. The inclusion of rock mass discontinuities produced the “Synthetic
rock mass” concept [4]. Advances in computational power have enabled the use of more
complex shapes for the component particles, namely, polygonal or polyhedral, leading
to the “Bonded-block model” (BBM) framework [5,6]. The progressive development of
these models, aiming at more closely simulating physical fracture processes, has led to the
generation of larger and more elaborate block assemblies, as well as more complex contact
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relations. Reviews of the multiple numerical formulations, considering both particle and
block models and discussing their advantages and drawbacks, are available [7–10].

The present paper addresses the application of bonded-block models to underground
works in rock; discusses the essential assumptions, the model generation and analysis pro-
cedures, and the results that can be obtained; and provides guidelines for their application.
The proposed approach is based on a fairly simple numerical model using rigid blocks
and a standard DEM contact formulation. The contact fracture model employs a bilinear
post-peak softening curve that can be calibrated by given fracture energies. It is shown
that this type of model is capable of reproducing the modes of fracture observed around
underground openings, namely, spalling patterns.

The context of the problem is introduced in the next section by means of a litera-
ture review of the key developments in the discrete element modeling of rock fracture.
Section 3 discusses the fundamental issues involved in the use of bonded-block models.
The generation of block shapes using Voronoi or Delauney algorithms is addressed, and
the outcomes of the two alternatives are compared. The procedure for the calibration of the
micro-properties for a given randomly generated assembly using the experimental data is
described. The role of contact constitutive models including fracture mechanics concepts is
discussed. Section 4 presents a simple application to an underground opening, showing
the ability of bonded-block models to represent the failure modes observed in the field.
Some concluding remarks are finally provided.

2. Discrete Element Modeling of Rock Fracture

The essential concept of discontinuum modeling was stated by Cundall [2] as follows:
“Assemblies of discrete particles (bonded together to represent rock, and unbonded to
represent soil) capture the complicated behavior of actual material with simple assumptions
and few parameters at the micro level. Complex overall behavior arises as an emergent
property of the assembly”. In contrast, continuum modeling employs complex constitutive
relations at the element level to reproduce physical nonlinear behavior.

2.1. Bonded-Particle Models

In the early Cundall paper [1], both polygonal and circular particles were already
proposed. Rock mechanics codes typically resorted to polygonal or polyhedral blocks to
simulate jointed rock, while soil mechanics made more use of circular particles. Circular-
particle models have a high computational advantage since the procedures for contact
detection and the calculation of contact forces are much faster than in the case of more
complex shapes. Therefore, much larger systems can be addressed. By applying breakable
bonds to the circular particles, Potyondy and Cundall [3] were able to study the fracture of
intact rock. These models were able to reproduce the main features observed in laboratory
tests. However, it was soon found that more complex particle shapes were necessary to
fully account for the frictional effects, particularly for higher confinement stresses. The use
of macro-particles or particle clumps allowed a more realistic representation of the various
traits of the physical evidence [11–13] by using a higher bond density to improve the model
performance. Various alternative formulations have been proposed for circular-particle
models intended to more closely simulate the response of polygonal-block systems, namely,
“grain-based models” [14], multiple-contact models [15], or the “flat-jointed material”
concept [16]. The use of more elaborate contact relations was also proposed, namely, by
introducing a tensile softening model to analyze the fracture initiation and propagation in
tensile and compression lab tests [15,17]. Inserting the rock mass compartmentation and
planar features, such as joints and faults, into the particle assemblies led to the “Synthetic
rock mass” concept, accounting for the nonlinear behavior both at the block interfaces and
in their interior [4].
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2.2. Bonded-Block Models

Discrete element block models have been mainly employed in rock engineering to study
failure modes defined by rock discontinuities. Researchers have taken advantage of the versa-
tility of the method, creating randomly generated joint systems or detailed block assemblies,
in order to examine stress distributions in rock masses [18], dam foundation problems [19,20]
or local effects on slope stability [21,22]. Subsequently, it was recognized that the development
of new fractures could be addressed by defining potential crack paths, initially bonded, which
could then fail under the applied loading. This type of simulation of cracking and fracture
was used, for example, to study underground waste storage projects [23,24] and to investigate
fundamental issues of crack propagation [25]. The suitability of randomly generated Voronoi
polygons/polyhedra to represent the internal structure of rock materials has been recognized
in various studies [26]. These geometries resemble the observed patterns in some way, so
the block assembly may be used to reproduce the grain shapes and size distributions of the
various mineral components [5,27–30]. These block models are substantially more demanding
in computational terms than circular-particle models, mainly due to the effort to detect and
analyze the contact between interacting complex shapes. Therefore, 2D models of laboratory
specimens were the first applications, but 3D models and field problems are presently fea-
sible. The designation of “bonded-block models” (BBMs) for these block assemblies, with
the intention to study the fracture of geomaterials, was adopted more recently [6,31]. The
blocks are defined by a random network of potential cracks, forming triangles/tetrahedra
or Voronoi polygons/polyhedra, which are initially bonded but allow the fracture process to
progressively develop [9].

Three-dimensional Voronoi patterns were used to analyze uniaxial compression tests
on anisotropic rocks [32], as well as triaxial tests on rock salt, relating the damage evo-
lution characterized by the breakage of bonds with experimentally measured acoustic
emissions [33]. Different geometries of the joint network have been investigated, for exam-
ple, a triangular-block geometry in 2D models, allowing it to break into three parts [34].
Another way to generate a triangular-block geometry it to split the Voronoi polygons into
triangles formed by connecting each vertex to a central point [35]. Therefore, the initial
grains are able to break along these potential internal cracks. A 3D model of tetrahedral
blocks can also be obtained by means of a Delauney algorithm, which was employed, for
example, in the analysis of the fragmentation evolution in veined rock around underground
openings [6].

Other numerical formulations, namely, those based on FDEM or FEM/DEM ap-
proaches [36,37], have been used in rock fracture studies. The underlying concepts are
similar. The main differences with respect to DEM codes are typically related to the imple-
mentation of contact mechanics, their numerical treatment and the constitutive assumptions.
For example, FDEM models were used in the analysis of crack development around under-
ground excavations in rock [37]. A different BBM formulation in which fictitious stress is
estimated inside the rigid blocks, which are allowed to split along an arbitrary plane, was
applied in a study of the fracture of transversely isotropic rocks [38]. Alternative numerical
implementations of fracture mechanics formulations have been proposed for analyzing
failure processes in underground works [39] or slopes [40]. A reference should also be made
to research on more complex block shapes, namely, involving smoothed boundaries [41].

The application of bonded-block models in rock mechanics has swiftly extended to
more complex physical problems and diverse site conditions, including time-dependent
damage evolution in sandstone [42]; hydro-mechanical problems [43]; dynamic fracture in
the simulation of wave propagation experiments in a modified split Hopkinson pressure
bar [44]; and thermo-mechanical problems [45–47]. Practical engineering applications have
become more widespread in the design of rock bolt support in underground mines [48]; in
the study of the stability of deep mining pillars [49]; in the investigation of design issues in
underground works [50]; and coal-mining problems [51,52]. An issue of major importance
in research using bonded-block models remains the calibration of input parameters using
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lab or field experiments in order to provide contributions for the progressive validation of
these models [46,53].

The scope of bonded-block models has extended outside rock mechanics to include
the fracture of other geomaterials and structures, for example, in the detailed analysis of lab
tests on masonry specimens, prisms and wallettes [54–56]. Concrete fracture has also been
approached with bonded-block models [57] and related numerical techniques employing
polygonal or polyhedral elements [58].

Bonded-particle and bonded-block models are both effective tools to address rock fracture.
The early circular-particle models were known to underestimate frictional effects [3]. Further
developments, e.g., using particle clumps [11,13] or special contact formulations [14–17], allowed
a more realistic simulation of the grain structure. Block models represent, in a natural way,
polygonal grains using standard DEM contact formulations, which also allow the extension of
the analysis into the large-displacement regime without the need to resort to special-purpose
techniques. From a computational point of view, block models tend to be more demanding,
given the additional complexity of the contact detection and update tasks. Thus, particle
models may allow more refined analyses with reasonable run times. In summary, both types of
modeling remain active fields of research and application in rock engineering, as discussed in
various review articles [7,9,10,58].

3. Generation and Application of Bonded-Block Models
3.1. Modeling Assumptions and Block Patterns

A bonded-block model is composed of an assembly of discrete blocks, defined by two
types of discontinuities: (i) the real rock mass discontinuities, namely, joints, faults and other
features; (ii) a random network of potential discontinuities inside each intact rock block
corresponding to conceivable crack paths. Figure 1 shows the conceptual representation of
three rectangular blocks divided into Voronoi-shaped polygonal blocks, hereafter named
“inner-blocks” (or sub-blocks). The joints between the rectangular blocks stand for real rock
mass discontinuities. The interfaces between the inner blocks are initially bonded and are
assigned the strength of the rock matrix. They can progressively fail in tension or shear,
allowing the progressive fracture and fragmentation of the block.
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inner blocks.

Voronoi patterns resemble the grain structures of many types of rock, and thus, various
authors have made inner blocks that correspond to different minerals. In this case, it is
possible to refine the model by subdividing each Voronoi polygon into triangles built
around a central point, thus allowing different properties for radial and peripheral joints
to distinguish between inter-grain and intra-grain cracks [35]. Alternative shapes of inner
blocks have been investigated. It is also possible to create an inner-block structure by
means of a Delaunay algorithm, a triangular mesh built by connecting the centers of
adjacent Voronoi polygons. In most instances, the inner-block pattern is simply understood
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as a means to create a network of potential cracks with random orientations. Cracking
patterns in Voronoi-shaped models often resemble those observed in tensile failure. In
3D, tetrahedral inner blocks can also be built with a Delaunay triangulation algorithm [6].
These triangular or tetrahedral patterns produce a crack network with more continuity than
the Voronoi shapes, since several planes meet at the nodes, generally allowing mechanisms
of failure involving more extensive shearing and sliding.

The interaction between inner blocks typically follows the standard DEM represen-
tation based on point contacts. For matching edges, two point contacts are located at the
endpoints. In the case of Figure 1, along the horizontal and vertical joints, a number of
vertex–edge contacts are created to analyze the mechanical interaction between the blocks.
The inner blocks may be numerically represented by either rigid or deformable blocks.
In the former case, the total deformation takes place along the joints, which are assigned
appropriate stiffness parameters. The option for deformable blocks may be implemented
by creating an internal mesh of elements (sometimes designated as zones). The simplest
solution relies on uniform-strain finite elements, either triangles or tetrahedra, which can
be easily fit into arbitrary block shapes. Fine internal meshes require extra nodes to be
placed along the edges, which will also contribute to improving the stress distribution
along the joints between the blocks, as they provide more contact points. The mechanics of
block contacts are described in the following section.

The bonded-block concept is intended to represent the fracture of the rock matrix
by means of tensile cracking and shearing along the interfaces between the inner blocks.
Failure under compressive loads is also accounted for by the progressive fracturing of
the inner-block interface network. In the analysis of a real rock mass, the pre-existing
discontinuities also have to be included. Major features can be inserted at known locations,
and joint sets can be defined by a few representative discontinuities. Discrete fracture
networks may also be used based on statistical parameters obtained in field studies. Once
all of these real discontinuities are inserted into the numerical model, the inner-block
patterns are generated inside the resulting blocks, thus allowing them to fracture in a
natural way, for example, at regions of stress concentration, such as rock bridges.

3.2. Mechanical Micro- and Macro-Properties

As in bonded-particle models, a distinction is made between “micro-properties” and
“macro-properties” [3]. Macro-properties are the properties of the global rock mass, defined
by its deformation and strength parameters. Micro-properties are the material parameters
required by the numerical model to control the mechanical behavior of inner blocks and
their interfaces, the potential crack network. The size chosen for the inner blocks influences
the global mechanical response of the system, as the joint density changes. Therefore,
for a given block size, the micro-properties have to be calibrated to produce a global
response consistent with the intended macro-properties, which are provided by laboratory
experiments on rock specimens or field tests on the rock mass. The choice of the inner-
block size depends on the computational resources available and the desired refinement
of the analysis, considering, for example, the size of the underground excavation and the
expected extent of failure zones. Once the block size is selected, calibration is performed
using numerical specimens generated with similar block dimensions.

The deformability of the numerical model depends on the elastic moduli of the inner
blocks and the stiffness of the joints or interfaces between them. The global deformation of
the random-shaped block system should match the experimental data. There are different
ways to split the deformation between the block material and the fictitious discontinuities.
The simplest option is to assume the inner blocks to be rigid so that the entire block
deformation is produced by the inner joints. At the other end, it is possible to adopt the
desired Young’s modulus of the block for the inner blocks. In this case, the joints will
have to be given a very high stiffness so that they do not influence the deformation. In
explicit time-stepping solution algorithms, unreasonably high stiffness parameters penalize
computational efficiency. Intermediate solutions are possible, for example, by assigning 90–
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95% of the deformability to the blocks, which gives approximately the same results without
excessive run times [56]. In most bonded-block models, the inner blocks are assumed to
be either rigid or elastic. It is certainly possible to assign non-elastic behavior to them,
for example, by means of elasto-plastic or damage constitutive relations. However, this
choice increases the complexity of the analysis and the calibration procedure. The dominant
approach is to enrich the numerical representation response by refining the potential crack
patterns, keeping the block or particle behavior as simple as possible.

The calibration of micro-properties typically starts with the definition of the deforma-
bility parameters in the elastic range. The target Young’s modulus can be that of the rock
specimen, for example, in the simulation of lab tests, or the rock mass deformation modulus
for field applications. The numerical joints in DEM models are zero-thickness interfaces,
with the constitutive relations defined in terms of joint stresses in the normal or shear
direction and the differences in the corresponding displacements across the joint. In the
elastic range, the ratios of stress to relative displacement define the joint normal and shear
stiffness. For the case of rigid inner blocks, a first approximation of the normal stiffness
of the fictitious joints is given by kn = E/d, where E is the target Young’s modulus, and
d is the average size of the inner blocks. Similarly, the shear stiffness may be estimated
from the target shear modulus G as ks = G/d. These expressions are only a first estimate. A
numerical test on a sample of the block arrangement with the assumed block size provides
a better approximation. Typically, a few random systems are tested, and the average value
is adopted. The Poisson’s ratio of the sample is rather dependent on the ratio of the joint
shear and normal stiffness parameters, so the numerical tests may provide a refinement of
the estimate of the shear stiffness.

For systems with deformable inner blocks, only a fraction of the deformation is as-
signed to the joints; therefore, the stiffnesses values will be proportionally higher. Compar-
isons of rigid-block models with deformable-block models in which the block material was
assigned 50% and 95% of the total deformation have been presented [56]. The deformable-
block model generally leads to a more realistic deformation pattern, but at a computational
cost. If a fine discretization is sought to have a detailed fracture network, then rigid inner
blocks would be the first choice.

The micro-properties of the strength parameters can be obtained by performing numer-
ical tests involving uniaxial tension, uniaxial compression and biaxial compression setups.
Many authors employ simple brittle failure models for the inner-block contacts, typically
defined by the uniaxial tensile strength and the Mohr–Coulomb parameters, cohesion and
friction angle. These micro-parameters can be varied until the desired macro-properties
are achieved in a sample with the intended block geometry and size. The use of contact
models considering post-peak softening is discussed in the following section.

3.3. Constitutive Model with Post-Peak Softening for Inner-Block Bonds

The mechanics of the contacts along the fictitious joints can be approached with various
constitutive models. The simplest assumption is to assume brittle failure, governed by the
peak values of tensile strength, cohesion and the friction angle. These micro-properties
can be calibrated to obtain the intended global strength. More elaborate models add a
post-peak-softening regime in tension and shear, which allow the consideration of fracture
energies [37,38,55,56]. Research on fracture modeling has shown the importance of size
effects due to the numerical element size. In practice, the contact discretization in bonded-
block models cannot be made fine enough to eliminate these effects, but the inclusion of
fracture energies in the bond breakage criteria may reduce them. Experimental data are
available in the literature to characterize the fracture mechanics parameters for different
types of rocks [59–61].

In the present BBM, the contact model proposed by Lemos and Sarhosis [56] is applied.
In this formulation, the post-peak regime can be represented by a piecewise linear curve
defined by a set of points. These authors compared linear, bilinear and trilinear softening
curves, concluding that the intermediate case provides a sufficiently accurate approximation



Appl. Sci. 2023, 13, 12207 7 of 14

in practical applications. Therefore, in the examples presented, a simple bilinear softening
curve is adopted in tension and shear, as shown in Figure 2. In the normal direction, the
vertical axis represents the joint normal stress ratio, defined as the ratio of the tensile stress
to the peak tensile strength. The horizontal axis is the joint normal displacement ratio,
defined as the joint normal displacement over the normal displacement at peak stress.
The first post-peak point corresponds to a fraction (βn1) of the peak tensile stress, and the
second point corresponds to the residual stress, here assumed to be null. The corresponding
displacements are defined by the parameters αn1 and αn2, multipliers of the peak elastic
normal displacement. In compression, elastic behavior is assumed, using the same joint
normal stiffness. In the shear direction, a similar type of post-peak curve is adopted, with
the vertical axis denoting the ratio of the shear stress to the peak cohesive strength. The
post-peak softening of the cohesive strength is defined by the parameters βs1, αs1 and αs2,
as shown in Figure 2b. The friction angle is assumed to remain unchanged; thus, after the
cohesive strength reaches the null value, the contact reverts to Coulomb friction. The areas
under the curves measure the fracture energies involved in the failure processes in tension
and shear.
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The tensile strength parameters can be calibrated by performing a numerical uniaxial
tensile test. Typically, in tension, the micro- and macro-properties are not very different;
thus, the experimental strength value is often taken for the fictitious joints. The numerical
uniaxial compression test is the critical one to calibrate the bond strength in shear. In
Section 4.1, these numerical tests are analyzed for the examples presented.

It should be noted that BBM models typically represent compressive failure by sim-
ulating the progressive cracking and slip of the bonds along the random joint network.
In compression, the contact constitutive model behaves elastically. Some authors have
developed contact constitutive models that include failure in compression, for example,
using cap-type formulations [62]. These models typically require the assumption of small
displacements, as the overlap of the blocks in contact may create numerical difficulties.

3.4. Solution Methods

The bonded-block model presented herein was implemented in the discrete element
code UDEC (Itasca [63]) by means of a user-defined contact constitutive law described in
the previous section. This 2D block code is based on Cundall’s general approach [2], in
which the solutions of both quasi-static and dynamic problems are executed by the same
time-stepping algorithm. While in dynamic analyses, realistic block masses and damping
are used, for quasi-static solutions, masses are scaled and artificial damping is employed to
provide efficient convergence to the static equilibrium or to a collapse mechanism. Large-
displacement analysis can be undertaken, taking into account block rearrangements and
the updating of contact locations during the progressive deformation and failure process.
This type of algorithm offers a robust solution for ultimate strength calculations, although
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long run times may be required for large 3D problems. The disadvantage of the algorithm
is tied to the requirements for numerical stability, which depends on the mechanical
properties. As a consequence, to improve computational efficiency, it is advisable to avoid
very high stiffness parameters; otherwise, convergence to the solution may require many
calculation steps. Very stiff blocks are preferably represented as rigid, while joint stiffness
should not exceed physically reasonable bounds. This is the reason why the stiffness of
the bonds between inner blocks should not be taken as nearly infinite, as it is feasible in
implicit solution codes, but they should be assigned at least a small fraction of the block
deformability. The simulation of uniaxial tensile or compression tests is usually performed
by prescribing displacement histories at the loading plate, keeping the applied movement
rates slow enough to allow the response to progress as smoothly as possible.

4. Analysis of Underground Structures
4.1. Example Problem

The case of a tunnel in a rock mass was selected to exemplify the application of bonded-
block models at the scale of field problems. Because the aim is discuss the essential features
and difficulties of using these models, a number of simplifying assumptions were made
regarding unrelated issues. In particular, rock mass jointing was not explicitly represented,
and thus, the only discontinuities in the numerical model are fictitious joints that are
potentially involved in the fracture process. Therefore, it is possible to simplify the geometry
by considering a vertical symmetry plane, as shown in Figure 3. The tunnel diameter is 8 m,
and the domain around the opening, with an area of 8 × 16 m, is represented by the bonded-
block assembly of rigid blocks in a Voronoi pattern with an average dimension of 0.3 m, also
shown in detail in the figure. An alternative triangular-block pattern was also considered,
as described in the following sections. The outer domain, with the overall dimensions
20 × 40 m, is assumed to remain elastic and is represented by deformable blocks with
an internal triangular finite element mesh with the target elastic properties. These outer
blocks are connected to each other and to the bonded blocks by numerical joints, which
are prescribed to remain elastic. The nonlinear behavior is thus confined to the rectangular
domain of randomly generated inner blocks surrounding the tunnel. Boundary conditions
enforce the symmetry plane on the left-hand side, preventing horizontal displacements,
while the lower boundary is fixed in the vertical direction. At the top boundary, vertical
stress is applied, representing the overburden load. On the right-hand side, horizontal
stress is applied, with a value equal to a given fraction of the vertical stress at the tunnel axis
depth and a gradient in the vertical direction to account for the self-weight of the material.
The main focus of the analysis is to simulate the effects of high compressive hoop stresses
at the tunnel sidewalls in order to examine the development of spalling failure modes.
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4.2. Selection of Micro-Parameters

The inner-block size in the tunnel model was chosen to be 0.3 m, providing a fine
discretization around the opening. The target Young’s modulus was 20 GPa, and the target
uniaxial compressive strength was set to 20 MPa. In order to calibrate the micro-properties,
a numerical simulation of a uniaxial compression test was performed using a Voronoi
pattern of the same size. In this example, the sample size was set to 8 × 16 m, as shown
in Figure 4a. After a preliminary trial, the joint normal and shear stiffnesses were set to
96.6 GPa/m and 40.3 GPa/m, respectively, to provide a deformation modulus of 20.0 GPa,
measured in the initial linear part of the obtained stress–strain curve. After a few trials,
the following micro-property strength parameters were selected: tensile strength, 3 MPa;
cohesion, 9.5 MPa; and friction, 250. The parameters defining the post-peak tensile curve
(Figure 2) were βn1 = 0.5, αn1 = 1.7, and αn2 = 4.0. In shear, the corresponding parameters
were βs1 = 0.5, αs1 = 1.3, and αs2 = 2.1. With these micro-properties, the peak stress attained
in the uniaxial compression simulation was 20.7 MPa, considered sufficiently close to the
target for this study. The failure mode, with the dominant vertical fracture pattern, is also
shown in Figure 4b.
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A second model was analyzed by employing a triangular-block pattern (Figure 5a),
generated with UDEC’s Trigon option [63], instead of the Voronoi polygons. This generation
procedure divides each polygon into triangles by inserting a central point. Therefore, it
leads to a slightly more refined discretization with more joints meeting at each intersection,
requiring different micro-properties to give the desired target macro-properties. In this
case, the joint normal and shear stiffnesses were increased to 162 GPa/m and 68 GPa/m,
respectively, resulting in a target deformation modulus of 20 GPa. The strength micro-
parameters and the shape of the post-peak curve were similar to those of the Voronoi model
given above. In this case, the peak stress in the uniaxial compression simulation reached a
value of 20.3 MPa, close to the result of the other block pattern. Often, these triangular-block
patterns lead to lower strength, requiring an increase of the micro-properties. In the present
case, the difference was relatively small, so the micro-strength was maintained. The failure
mode obtained with the triangular pattern is presented in Figure 5b.
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4.3. Underground Opening Model

The circular tunnel model shown in Figure 3 was analyzed considering the two types
of bonded-block patterns described in the previous section, the Voronoi polygon and
triangular-block shapes, with the properties obtained in the calibration process. The elastic
blocks surrounding the bonded-block model were assigned a global Young’s modulus
of 20 GPa. A vertical overburden stress of 15 MPa was considered, with the horizontal
stress component equal to half this value. Therefore, the largest compressive hoop stresses
are expected to develop at the tunnel springline. Under these stresses, tunnel excavation
without including any support leads to the failure of the blocks in the stressed sidewall
regions. The failure mechanisms obtained by the two models involve block movements in
the same region, but they are clearly influenced by the type of discontinuity network. The
polygonal-block system (Figure 6a) is more likely to develop vertical fractures, followed
by the failure of the columns into the opening. The triangular system (Figure 6b) allows
more continuity of sliding, inducing the formation of a wedge that progressively detaches.
The choice of the block pattern is an open issue that still requires further research. It is
necessary to extend the comparative assessment of the performance of the various types
of random networks intended to represent block fracture to practical situations of interest.
It is also important to analyze how this internal block fracture system interacts with rock
mass discontinuities, namely, when they are generated as discrete fracture networks.
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An alternative tunnel shape with vertical side walls was also analyzed. The failure
modes obtained with the two types of bonded-block patterns are compared in Figure 7.
The development of vertical fractures parallel to the walls is dominant, with the triangular
pattern again showing more sliding on inclined joints.
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5. Concluding Remarks

Discrete element models, a class that presently encompasses a wide variety of nu-
merical formulations, have been primarily employed in rock mechanics to study collapse
mechanisms induced by rock mass discontinuities. In such cases, rigid or elastic blocks
are a common assumption and provide an effective performance. The bonded-block con-
cept, by addressing the possibility of block fracture, enhances the range of applications
of these models, namely, for underground excavation problems involving higher stress
levels. Another important application lies in the analysis of block systems generated by
discrete fracture network algorithms, in which bonded-block models may be used to take
into account the possible breakage of rock bridges.

The present investigation shows that a bonded-block model based on simple mechani-
cal assumptions is able to reproduce fairly complex modes of failure found in underground
works in rock. This type of model can be built with a discrete element code based on a stan-
dard contact formulation and the use of rigid blocks. Fracture energies can be controlled by
incorporating a bilinear softening curve into the contact models.

In the example presented, polygonal and triangular-block systems were used, both dis-
playing suitable performance. Voronoi polygons provide a natural representation of a rock
grain structure. Triangular networks facilitate mechanisms governed by dominant shearing
patterns. Further research is required to assess their comparative advantages, in 2D and
3D, for typical underground excavation problems. The selection of the required block size,
considering the excavation dimensions and the expected extent of failure regions, also
requires more comprehensive studies of validation against field data. Another critical re-
search topic is the development of robust procedures for the calibration of micro-properties
in a systematic manner.

In order to focus on the key bonded-block concepts, the example analyzed was simpli-
fied by omitting pre-existing rock mass discontinuities. In practical problems, when rock
mass jointing is included, the inner-block mesh is an important tool to allow the breakage of
blocks, thus preventing non-realistic safety assessments. In these cases, the type of interior
pattern may be less critical, while the calibration of the micro-properties that govern rock
matrix fracture remains a central issue.
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