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Abstract

Reconstruction of a noisy compact emission must consider not only the point-spread function but also the effect of
noise. However, the traditional threshold method in widely-used CLEAN-based algorithms finds it difficult to
effectively prevent noise in the model image during noisy compact-emission reconstruction. This significantly
limits the performance in noisy compact-emission reconstruction, such as deep field imaging. There are two major
difficulties in the accurate reconstruction of a Stokes-I image of compact emission: first, the threshold method that
has been used in practice is difficult to use to separate compact emission and noise; and second, over-subtraction
makes it difficult for the reconstructed Stokes-I model image to remain positive. Therefore, a filter-based denoizing
mechanism is introduced in the search phase of the model components to separate signal and noise so that the
signal can be effectively extracted. The relatively larger loop gain for positive components means that
the reconstructed model is in line with astrophysics. This will reduce the errors between the true sky image and
the model image. The new model estimator is tested on a simulated JVLA observation with realistic source
distributions from the VLA Low-Frequency Sky Survey project and the SKADS/SCubed simulation. The
experiments show that it is very effective when used to separate signal and noise to lower the noise in the model
image. This work explores the use of existing common software CASA to achieve high dynamic range imaging,
which is an important step toward square kilometer array data processing.

Unified Astronomy Thesaurus concepts: Astronomy data reduction (1861); Astronomy data analysis (1858)

1. Introduction

Radio interferometry synthesizes a virtual aperture of a
diameter equivalent to the longest distance between the
telescopes in an array. The measured data are often termed as
visibilities or visibility function Vori, which is the Fourier
transformation of the true sky image Iori(often termed the sky
brightness function),

= ( )V FI , 1ori ori

where F denotes the Fourier transform. This involves the van
Cittert–Zernike theorem (Taylor et al. 1999; Thompson et al.
2017). In real measurements, only the noisy and incomplete
samples Vobs of the true visibilities Vori are available,

= + ( )V SV SN , 2obs ori obs

where S is the sampling function in the Fourier plane and Nobs

is the noise in the measured visibilities. We obtain the dirty
image Idirty by computing the inverse Fourier transform of the
measured visibilities Vobs,

= +- ( ) ( )I F S V N . 3dirty 1 ori obs

We know from the convolution theorem of the Fourier
transform theory that the dirty image is the convolution of
the true sky image Iori and the noise Inoise in the image plane
(Bhatnagar & Cornwell 2004), and the dirty beam

Bdirty= F−1S,

= * +( ) ( )I B I I , 4dirty dirty ori noise

where ∗ is the convolution operator. Iori is the sky signal. The
noise Inoise comes from the sky, ground, and receiver in radio
astronomy, which is one of the main factors that make image
reconstruction difficult (Puetter et al. 2005). White noise and
red noise are typically included in radio astronomical data.
White noise is typically caused by thermal fluctuations, in
which electromagnetic waves at all frequencies are proportion-
ally present. It is considered to be highly random and can
impact the sensitivity of radio antennas and systems. Mean-
while, red noise is often due to the nonlinearity of electronic
devices, resulting in lower-frequency signals with higher
intensity than their higher-frequency counterparts. Only white
noise is discussed in this work.
Deconvolution in radio synthesis imaging is used to remove the

sidelobes of the dirty beam in the dirty image, where both of them
are known. One of the most successful deconvolution algorithms
is the original Högbom CLEAN (Hg-Clean) algorithm (Hög-
bom 1974; Thompson et al. 2017), which decomposes the true
sky image as a collection of delta functions by finding the peaks
of residual images and then removing the corresponding dirty
beam from these peak points. To speed up the Hg-Clean
algorithm, Clark (1980) improved it by using the fast
Fourier transform (FFT) to compute the convolution between
the model images and the dirty beam. The Cotton–Schwab
algorithm (Schwab 1984) improved the Clark algorithm by
executing the major-cycle subtraction of CLEAN components
on the ungridded visibilities, which can effectively correct
certain gridding errors. Recently, some scale-sensitive CLEAN
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deconvolution algorithms (Bhatnagar & Cornwell 2004;
Cornwell 2008; Rau & Cornwell 2011; Zhang et al.
2016, 2020, 2021b) have been proposed to represent extended
emission more sparsely and effectively.

In the past 40–50 yr, this type of greedy (CLEAN-based)
algorithm has been fully developed and has achieved
significant results (Event Horizon Telescope Collaboration
et al. 2019). In particular, the main focus in recent years has
been on how to effectively reconstruct the extended features.
However, a scene with noisy point sources is still a problem
that remains unsolved. When noise and compact emission are
comparable, it is difficult to distinguish between the two. This
implies that without introducing separation techniques, a
compact emission is hard to recover. A threshold approach,
which is defined as a method that separates signal from noise
by setting a threshold value, is usually employed in radio
astronomy. While this approach has been widely-used in radio
astronomical processing, it may not be suitable for some
scenarios, such as in deep field imaging, where the noise level
is comparable to the signal. More accurate reconstruction in
scenarios such as source counting essentially requires the
separation of noise and compact emission. Therefore, new
approaches that can better handle the noise and point-spread
function (PSF) sidelobe confusion should be explored.

In this paper, we introduce a new model estimator that is able
to reconstruct point sources from a noisy observation. This
study primarily addresses the challenges of imaging compact
source scenes with noise in narrow-band observations, while
disregarding issues related to broadband imaging.

In Section 2, the scale-free CLEAN for noisy compact-
emission reconstruction and its problems will be described. In
this section, we will discuss random noise represented by
thermal noise (non-thermal sources of noise and the impact of
these are not discussed in this paper) and confusion noise,
which arises during the deconvolution process and becomes
intertwined with random noise. Their combined effect plays a
crucial role in the reconstruction of a noisy compact emission.
In Section 3, we will describe the new model estimator,
referred to as Denoizing-Clean (Dn-Clean) in this study, and
provide its algorithmic details. In Section 4, some experiments
will be described to demonstrate the performance of the new
deconvolution algorithm. In Section 5, we simply conclude this
algorithm.

2. Problems of Noisy Compact-emission Reconstruction

We know from Equation (4) that the image obtained by
interferometry contains the effects of both the PSF and noise.
This essentially requires a good model estimator to have the
ability to eliminate both effects. However, the current common
compact-emission estimators build models by continuously
identifying the most reliable component with the maximum
value from the residuals, and they then further eliminate the
convolution effect of the PSF contained in a component. These
methods are designed to remove the effect of the PSF sidelobes
and can achieve good reconstruction effects in scenes with a
high signal-to-noise ratio.

However, here we must mention “clean bias” (White et al.
1997; Rau et al. 2016). The deconvolution must be quite deep
to effectively avoid a large amount of signal remaining in the
residual, which is particularly crucial in scenarios such as high
dynamic range imaging or deep field imaging. However,
cleaning too deep will also cause a “clean bias” to

systematically suppress the signal, especially when the side-
lobes are relatively large (Condon et al. 1998). For example, for
VLA, the sidelobes of the dirty beam that are wider than the
main lobe cause the area of one sidelobe to be larger than the
area of the main lobe, which can cause the sidelobes of the
diffuse emission to be brighter than the correct position, and
false components will be reconstructed in these bright
positions. However, the clean bias can be suppressed or
eliminated to the greatest extent by adjusting the weight to
obtain a dirty beam with fewer sidelobes (Condon et al. 1998)
or improving the deconvolution algorithms (see the following
contents or refer to Rau et al. 2016).
In addition, these existing deconvolution algorithms usually

use noise threshold methods to separate and eliminate the
effects of the noise. However, their performance will be
significantly reduced in some scenes, such as deep field
imaging, where the noise and PSF sidelobe confusion (Rau
et al. 2016) are often not negligible. This happens because both
the noise and compact emission can be perfectly represented as
delta functions. When the amplitude of compact emission is
less than or equal to the maximum value of the noise, then the
noise and compact emission are no longer distinguishable in
the peak search method. If the reconstructed signal level is
above the maximum amplitude of the noise, then there may be
a large amount of compact emission remaining in the residuals,
which cannot be reconstructed. If the reconstruction goes deep
(over-CLEANing), then a lot of noise will enter the model.
Consequently, a large number of false sources will be
introduced and it will be impossible to distinguish whether it
is a real source or not. This could be unacceptable in data
processing scenarios such as EoR imaging. Therefore, a noise
cancellation mechanism for noisy compact emission must be
included in the model estimator.

3. The Model Estimator

The proposed model estimator adopts the parametric model
to solve the PSF problem. The mechanism of filter-based
denoizing is introduced to realize the separation between noise
and sky emission.

3.1. Filtering for Separation between Noise and Emission

Both noise and compact emission exist in the high-frequency
part of Fourier space and are intertwined. However, the
emission reconstruction simply pursues the high-frequency
part, i.e., the image details. Filtered denoizing is a general
technique in the field of signal and image processing. In this
work, the noise in the residual image is suppressed by a filter
operator T before the model component search,

= *- ( )I T I , 5filt res res

where -I filt res is the filtered residual image and there are many
options for the filter T. In general image processing, a low-pass
filter is usually used to achieve noise cancellation (Gonzalez &
Woods 2010). This is particularly important for source
identification/detection (Portillo Stephen et al. 2017; Vafaei
Sadr et al. 2019) in the deconvolution process. Such methods
have been widely-used in the multi-scale reconstruction of
diffuse emissions in astronomy (Bhatnagar & Cornwell 2004;
Cornwell 2008; Rau & Cornwell 2011; Zhang et al. 2016).
However, there is no good strategy to deal with noise in the

2

The Astronomical Journal, 166:53 (12pp), 2023 August Zhang, Zhang, & Wang



conventional scale-free CLEAN algorithms that are used for
compact-emission reconstruction.

3.2. Parameterization for Compact Emission

When the noise is separated from emission, the representa-
tion of the compact emission is another important issue in
reconstructing it. The delta functions or points are undoubtedly
a very good representation of compact emission (Rau 2010). In
this work, we follow the basic idea that delta functions
represent compact emission. A credible model image Imodel

with a limited number of delta functions (points) is used to
approximate sky emission,

å d= + = - - +
=

( ) ( ) I I I x x y y, , 6o
k

L

k k k k o
ori model

1

amp

where òo is the error between the model image Imodel and the
true sky image Iori.

However, some new parameterization strategies have been
introduced for better model estimation. Scale-free algorithms
only introduce the scale prior, but not the amplitude prior. In
fact, the amplitudes are only adjusted by a fixed loop gain,
which will cause the over-subtraction of some amplitudes. For
compact-emission reconstruction, these negative components
mainly come from correcting the over-subtraction caused by a
fixed loop gain. Different loop gains for positive and negative
components to solve the problem of negative component
reconstruction caused by over-subtraction have been success-
fully applied in diffuse emission reconstruction (Zhang et al.
2021a). This strategy has been proven to effectively reduce the
negative components during deconvolution in the Stokes-I
model image, ensuring the positiveness of the model, which
makes it easier to impose strict non-negative restrictions during
the major cycle of the CLEAN deconvolution. In this study,
non-unique loop gins are integrated into our proposed model
estimator for compact-emission reconstruction. A conservative
method to balance between the positive characteristics of the
model image and the necessity of negative components during
deconvolution uses a smaller loop gain for negative compo-
nents. This works well when the loop gain g for negative
component is half of the loop gain for positive components.

⎧
⎨⎩

=
>

< =
( )g

a I

a I

, 0,

0.5 , 0,
7k

k

amp

amp

where a is the value of loop gain for positive components. At
the same time, just like the existing CLEAN-based algorithms,
standard deviation is used as a stopping criterion, which helps
to judge whether the residuals have reached the noise level.
These methods can help us to find a better model image to
approximate the true sky image.

3.3. The New Reconstruction Algorithm

These ideas form a new model estimator in the following
ways. Before searching each model component, the noise and
sky emission have been separated, allowing the sky emission to
be visible from the noisy image. Our parameterization process
is then used to construct each component. The specific process
to solve this reconstruction problem is as follows.

1. Filter the current residual image Ik
res (the dirty image for

the first time) with a low-pass filter T.

2. Find the delta component which is the absolute peak
located in the point (xk, yk) in the smoothed residual
image, and the corresponding amplitude is Ik

amp in Ik
res. It

is worth mentioning here that the sources of interest are
first separated from the noisy image and they are then
removed from the full-resolution dirty/residual image.

3. Update the residual image = - *-I I gBk k
res

1
res dirty

( )I x y,k k k
amp . The smoothed residual image obtained in
the first step was also updated in this step. The loop gains
g are different for positive and negative components.

4. Update the model image Ik
model.

Repeat steps 2–4 unless the standard deviation of the
current residual image is less than 50% of the residual
image in the last major cycle (see the next step).

5. Compute the residual image of the major cycle -I res major

by predicting the current model image onto ungridded
visibilities, and then computing the inverse Fourier
transform of the difference between the predicted
visibilities and the measured visibilities,

= -- ( )†I A V AIres major obs model , where A denotes all
operations from the model image to the predicted
ungridded visibilities and A† is the inverse operations of
A.

Repeat steps 1–5 unless the standard deviation of the
last residual image is less than the noise level.

6. Make the CLEAN image Iclean.
7. Compute the restored image Irestored by adding the

residual image into the CLEAN image.

Steps 2–4 are termed as the minor cycle and the steps 1–5 are
termed as the major cycle (Rau 2010; Rau & Cornwell 2011).
In the sense of optimization, the estimation of the model

image in the minor cycle is equivalent to minimizing the
objective function χ2 (Zhang et al. 2020),

c = - * ( ) I B I , 82 dirty dirty model
2
2

where 2
2 is the L2 norm. According to Equation (4), the above

equation can be written as,

c = * + - *( ) ( ) B I I B I . 92 dirty ori noise dirty model
2
2

This work focuses on the case of noisy compact emission.
The purpose is to separate the noise and compact emission
before the component search, so that the correct component can
be found easily and more accurately from the dirty image after
noise suppression. Noise suppression can be obtained by
convolving a low-pass filter,

= * = * + *- ( ) ( )I I T B I I T , 10filt dirty dirty dirty ori noise

where Ifilt−dirty is the denoized dirty image. According to the
nature of the convolution (Gonzalez & Woods 2010), the filter
T is equivalent to directly acting on the noisy image determined
by the formula Iori+ Inoise, and then convolving with the PSF
Bdirty. The filtered dirty image is represented as follows,

= * + * = * -- ( ) ( )
( )
I B I I T B I ,

11
d

filt dirty dirty ori noise dirty ori

where òd is the difference between the filtered noisy image
(Iori+ Inoise) ∗ T and the true sky image Iori. òd comes from two
parts. One part is the difference between Iori and Iori ∗ T, and the
other part is the residuals after filtering of the noise Inoise. And
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so,

= - * - *( ) ( ) I I T I T. 12d
ori ori noise

This filtering technique is capable of effectively suppressing
noise while preserving compact emission. A low signal-to-noise
ratio filtering experiment was done to demonstrate its effective-
ness. The middle point marked by the red box in Figure 1 is the
simulated compact source and the other two red boxes are noise
points. By comparing Figures 1(a) and (b), it can be seen that
filtering can significantly suppress noise and that compact
emission has been revealed. This effectively separates the noise
and compact sources, and preserves compact emission so that the
noise cannot enter the model image. Figure 1(c) shows the
difference before and after filtering. This error in Figure 1(c) is
allowed and will be corrected in the major cycle (please refer to
the algorithm flow above). The core purpose here is to expose
compact emission from noisy observations so that it can be
accurately found. Existing scale-sensitive CLEAN algorithms
(Bhatnagar & Cornwell 2004; Cornwell 2008; Rau 2010; Zhang
et al. 2016) have a similar approach, but for extended emission
(i.e., multi-scale features). In the adaptive scale CLEAN
algorithms (Bhatnagar & Cornwell 2004; Zhang et al. 2016),
the correlation length is used for the basic separation of extended
features and noise. The term involving noise Nobs in the
Equation (2) can be regarded as a Gaussian random process
(Thompson et al. 2017), whose pixel-to-pixel noise is independent
(i.e., zero correlation length; Bhatnagar & Cornwell 2004). Since

the correlation length of the extended feature is bigger than zero,
for the noisy image Iori+ Inoise, the extended feature and noise can
be distinguished by the correlation length. In a dirty image
containing a PSF, noise is also affected by the PSF. At this time,
the extended feature has the minimum correlation length of the
resolution element (the synthesized beam), and the upper limit of
the correlation length of noise and compact emission is the
resolution element (Bhatnagar & Cornwell 2004). This can
distinguish extended features and noise in dirty images. However,
the traditional threshold method is still used to separate compact
emission and noise, and it is widely-known that they cannot be
separated well. The fundamental reason why compact emission
and noise cannot be separated well is that they have the same
correlation length in the noisy image Iori+ Inoise and the dirty
image. In the reconstruction process, there is also confusion noise
(which is applicable to the above analysis).
In the case of noisy compact emission, we use filtering

methods to preliminarily separate compact emission and noise.
This is a common method in the field of signal processing
(Gonzalez & Woods 2010). Combined with the
Equations (10)–(8)–(4), the objective function in the proposed
algorithm is written as,

c = * + * - *

= * - - *

( )
( ) ( )

 
 

B I I T B I

B I B I . 13d

2 dirty ori noise dirty model
2
2

dirty ori dirty model
2
2

What needs to be solved now is to find the most suitable
model image Imodel by minimizing this objective function (13).

Figure 1. Simulation of denoizing. (a) the noisy image degraded by a Gaussian noise distribution with PSNR of 22.92 dB, peak of 0.038 mJy and noise level of
0.0024 mJy; (b) the denoized image with PSNR of 26.59 dB, peak of 0.012 mJy, and noise level of 0.0009 mJy; (c) the differences/errors between the noisy and
denoized images. The middle point marked by the red box is the simulated compact source and the other two red boxes are noise points.

Figure 2. Results from the simulation of JVLA observation with a VLSS distribution: (a) the reference distribution/image; (c) the observed/dirty image with the
effects of the PSF and noise.
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The errors caused by the separation of compact emission and
noise, as well as other errors such as gridding (Rau 2010), can
be corrected in the major cycles.

To find the minimum value of the objective function, the first
derivative provides the update direction in the proposed

algorithm (Bhatnagar & Cornwell 2004; Zhang et al. 2020),

c c¶
¶

º
¶
¶

= -
¶
¶

= -[ ] ( ) ( )
p I

I
p

I
I2 2 max , 14

k k
k

T k

k
k

2 2

amp
res

amp
res

Figure 3. Reconstruction results from the proposed model estimator: (a) the reconstructed model image; (b) the smoothed model image convolved with the CLEAN
beam; (c) the residual image; (d) the restored image (the smoothed image + the residual image).

Figure 4. Another JVLA observation simulation of a VLSS distribution with more compact sources and a strip-shaped extended structure. (a) the reference
distribution; (b) the PSF with non-negligible sidelobes; (c) the dirty image with the effects of the PSF and noise.
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where

= - *- ( )I I gB I , 15k k k
res

1
res dirty amp

where =p Ik k
amp and ()max find the absolute peak of the

current residual image Ik
res. The peak search from the current

residual image is equivalent to minimizing the objective
function along the axis of the largest derivative. Finding the
peak point is a fast implementation of the computation of the
first derivative. In the major cycle, deconvolving to the noise
level is equivalent to minimizing the following equation
(Cornwell & Wieringa 1997; Bhatnagar & Cornwell 2004;
Rau & Cornwell 2006; Bhatnagar et al. 2008; Rau et al. 2009;
Rau & Cornwell 2011),

c = - ( ) V AI . 162 obs model
2
2

The optimal model will fit the measured visibilities best.

3.4. Implementation

To separate signals and noise, the noise needs to be filtered
by a low-pass filter during the search phase of model
components. This filter can take many forms (Gonzalez &
Woods 2010), but in this implementation we choose a Gaussian
low-pass filter. Mathematically, a filter function is implemented
by a convolution between the residual image and a Gaussian
function,

= *- ( )I G I , 17filt res res

where -I filt res is the residual image after smoothing and G is
computed by the following function,

ps
= -

s

+

( ) ( )G x y e,
1

2
, 18

2

x y2 2

2 2

where x and y are the distances from the origin in the horizontal
and vertical axes, respectively, and σ is the standard deviation.
The Fourier transform of a Gaussian function is another
Gaussian function. So smoothing the residual image is
equivalent to suppressing the noise in the residual image. In
other words, the noise is suppressed in the component search
phase. Thereby, it is difficult for noise to enter the model image
used to approximate the true sky image under the same
conditions. This achieves the separation between the signals
and noise.

The propagation of the error òd can be suppressed by simply
updating the residuals from the dirty image,

= - * ( )I I B I . 19k k
res dirty dirty model

After each update, it is necessary to re-separate compact
emission and noise using Equation (17) in the new residual
image Ik

res. However, the convolution that is used to separate
compact emission and noise is performed only a few times or
even once for each major cycle, resulting in a good
performance (see Section 4), so it is computationally cheap.
Although this method is similar to the tapering technique

(Rau 2010; Thompson et al. 2017), there are some differences.
In tapering, the effects of smoothing on the dirty image are
fixed and the error caused by smoothing cannot be corrected in
the deconvolution process. Our method can correct this error
during deconvolution. Simultaneously, we have found that it
works well when the standard deviation of the Gaussian filter
function is several times that of the noise.
This new algorithm is similar to the Cotton–Schwab CLEAN

algorithm, both predict the intermediate model to ungridded
points and compare it with the original measured visibilities to
reduce errors. The main difference is that our model estimator
uses a new method to prevent noise from entering the model
and uses different loop gains to optimize the model. It is these
differences that give the new algorithm a better performance for
noisy compact-emission reconstruction. Python and the
Common Astronomy Software Applications package (CASA)
are used to jointly implement this work. The Högbom
algorithm5 and the minor cycle of the proposed algorithm are
implemented in Python. The major cycle of the proposed
algorithm is implemented by calling some functions of
the CASA.

4. Numerical Experiments and Comparisons

4.1. Reconstruction for Faint and Compact Emission

To illustrate the motivation of the proposed model estimator,
we apply it to the simulated JVLA6 observation data. The
distribution in Figure 2(a) is from the VLA Low-Frequency
Sky Survey (VLSS) project.7 It is obtained by removing the
noise and extended sources larger than 9 pixels from the

Figure 5. Reconstruction results from the proposed model estimator: (a) the reconstructed model image; (b) the residual image; (c) the restored image.

5 A similar implementation can be found on the RASCIL, which is located in
https://github.com/SKA-ScienceDataProcessor/rascil.
6 https://science.nrao.edu/facilities/vla
7 http://lwa.nrl.navy.mil/VLSS
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original data. The CASA is then used to do a simulated
observation for the reference distribution. The simulated
observations were performed in the Ls-band with a bandwidth
of 1 GHz and 32 channels, and lasted for a duration of 6 hr.
Gaussian white noise was added to the measured visibilities for
the purposes of our project research. The observed image (i.e.,
dirty image) is shown in Figure 2(b). It can be seen that the
sources have been degraded by the PSF and the dirty image is
full of noise; some sources have been submerged by the noise
and the PSF. Our task is to eliminate the effects of the PSF and
noise, i.e., to recover the sources in the reference distribution
from the dirty image.

The reconstructed results using our model estimator are
shown in Figure 3. The reconstructed model image
(Figure 3(a)) has recovered all of the sources, except for one
faint and compact source that is not originally visible in the
dirty image. The two faint and compact sources in the red
boxes have been completely submerged in the noise of the dirty
image. However, our model estimator can reconstruct them
well. The smoothed model image convolved by the CLEAN
beam is shown in Figure 3(b), and it no longer has the effect of
the PSF sidelobes. In this image, the two faint and compact
sources are clearly visible. If we look at the restored image
(Figure 3(d)), then these two sources are not visible. This

Figure 6. Model images from the Hg-Clean and our model estimator. The first column comes from the Hg-Clean and the second column comes from our model
estimator. The first to third lines are reconstructed from the dirty images of about 30, 31, and 33 dB for PSNR, corresponding to the peak values of 30σ, 35σ, and 45σ
in the reference distribution respectively. The weakest signal in the reference distribution is comparable to the level of noise. Nσ here refers to the ratio of the peak
value in the reference distribution to the noise level. The noise level is measured by the rms, i.e., σ. These results are reconstructed with the CLEAN threshold of 3σ.
The details are as follows: (a1) from the Hg-Clean with 30σ; (a2) from our model estimator with 30σ; (b1) from the Hg-Clean with 35σ; (b2) from our model estimator
with 35σ; (c1) from the Hg-Clean with 45σ; and (c2) from our model estimator with 45σ.
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shows that these two faint and compact sources are below the
noise level. This illustrates the effectiveness of the proposed
model estimator well.

To further verify the performance of our model estimator,
another simulated observation with a realistic VLSS distribu-
tion was performed. The simulated observation process is
similar to the first experiment. The reference distribution
(Figure 4(a)) has more compact sources and a strip-shaped
extended structure. The simulated results of the observation
with the noise and PSF effects are shown in Figure 4(b). The
reconstructed results are shown in Figure 5. Compared to the
reference distribution, the model from the proposed model
estimator (Figure 5(a)) reconstructs all the sources, including
some sources below the noise level (which can be seen by
comparing the restored image with the reference distribution).

The reconstructed image of our model estimator is compared
with that of the conventional method (the Hg-Clean algorithm),
as seen in Figure 6. It can be seen that our model estimator can
reconstruct the sources well at different noise levels. However,
this is not the case with the conventional Hg-Clean algorithm.
As the signal-to-noise ratio of the noise decreases, more noise
will enter the model image. The statistical results of the number
of sources in the model images are shown in Table 1. This also
shows that the false sources from the noise in the reconstructed
image will continue to increase as the signal-to-noise ratio
decreases. Our experiments also indicate that aside from the
number of point sources of the reference image, there is an
approximately equal number of positive and negative sources
in the reconstructed images. This suggests that the erroneously
reconstructed point sources are highly likely a result of noise,
which is a problem that cannot be effectively addressed through
conventional thresholding methods.

To further demonstrate the effectiveness of the proposed
algorithm, different reconstruction levels of 2.5σ, 3.5σ, and
4.5σ were done, and the results are shown in the Table 2. It can
be seen that the conventional method results in a lot of noise
entering the model when the reconstruction is near or below 3σ,
and more noise will enter the model as the reconstruction
deepens. However, the proposed model estimator is not
significantly affected by the noise and is able to reconstruct
the sources well from a noisy compact emission. At the same
time, if the reconstruction level is much higher than 3σ, then
neither method can reconstruct faint sources. The experiments
in this study show that the proposed model estimator can do a
deeper reconstruction than the Hg-Clean algorithm, which
enables it to perform high dynamic range reconstruction.
Furthermore, since filtering involves a convolution operation,
which is computationally cheap, the CLEAN time will not be
significantly increased.

4.2. Error Distributions and CLEAN Bias

A new reference distribution with more crowded point
sources from the SKADS/SCubed simulated sky project
(Wilman et al. 2008) is simulated as an JVLA observation (see
Figure 7) to further verify the performance of the proposed
model estimator. This experiment is similar to the previous
simulated observations, but with a higher sidelobe level of
0.025. The reference distribution has a data range of 7 uJy–
8 mJy. The noise level in the dirty image is 12.7 uJy. The
restored image is shown in Figure 8. Upon close inspection, it
may be noted that when sources are particularly close to the
edge of the image, the restored image of the Hg-Clean
algorithm (Figure 8(a)) has more obvious sidelobe structures,
while that of our model estimator (Figure 8(b)) shows slight
false features, albeit less visibly. This may be attributed to the
fact that our proposed estimator has better denoizing
capabilities.
Figure 9 shows the error distributions (imaging fidelity) of

the two algorithms, which is the ratio of the reconstructed
model to the reference image located at all true source pixels
(Rau et al. 2016). We counted the number of sources
reconstructed above 35.1 uJy, 152.1 uJy, 250 uJy, and error
distributions (see Figure 9). Figure 9 and Table 3 show that
there is no significant difference between the two algorithms in
restoring strong sources (sources that are significantly higher
than noise levels), but the proposed model estimator can
reconstruct fainter sources.
The CLEAN bias is a well-known system shift, in which

reconstructed intensities tend to be lower than expected values.
This is common for deep imaging with large amounts of
closely spaced faint sources (Rau et al. 2016). When the
reconstruction is below 3σ (35.1 uJy= 2.76σ), the mean value
of error distributions of the Hg-Clean algorithm is 0.954 (see
Table 3), i.e., there is a systematic downward shift—CLEAN
bias, while our model estimator has a mean value of 0.997
close to 1.0, which shows that our model estimator does not

Table 1
Statistics of the Number of Reconstructed Sources from Different Noise Levels

PSNR Hg-Clean Dn-Clean
(dB) Recon / False Recon / False

30 14/138 13/0
31 14/115 14/0
33 14/104 14/0

Note. “PSNR” denotes the Peak Signal-to-Noise Ratio, “Recon” represents the
number of sources reconstructed from the reference distribution, and “False”
refers to the noise entering the model. In this example, there are 14 sources in
the reference distribution. All results come from 3σ reconstruction.

Table 2
Quantity Statistics of Reconstruction Sources from Different Reconstruction

Levels

Reconstruction Hg-Clean Dn-Clean
Levels Recon / False Recon / False

2.5σ 14/104 14/0
3.5σ 14/44 14/0
4.5σ 4/0 4/0

Note. These reconstruction results come from 2.5σ, 3.5σ and 4.5σ
reconstructions respectively.

Table 3
Source Number and Mean Value of Error Distributions of SKADS/SCubed

Simulation Data with Low Dynamic Range

s > 35.1 uJy s > 152.1 uJy s > 250.0 uJy

Algorithms Number Mean Number Mean Number Mean

Hg-Clean 1458 0.954 455 0.996 294 1.002
Dn-Clean 2930 0.997 446 0.997 291 1.004

Note. “Number” of reconstructed sources is counted at all true source pixels of
the reference image. “Mean” is the Mean Value of Error Distributions.
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have such a bias. This test is repeated in a high dynamic range
case with an addition of 100 mJy in that reference image. We
can get the same conclusion from the high dynamic range
experiment (see Figure 10 and Table 4).

It can be seen that the performance of the proposed model
estimator in reconstructing noisy compact emission is

significantly higher than that of the conventional CLEAN-
based method (in terms of faint source reconstruction and
CLEAN bias in these experiments). This happens because the
proposed model estimator contains strategies for dealing with
both noise and PSF, while the conventional CLEAN-based
method only has the PSF elimination strategies. The

Figure 8. Restored images of the SKADS/SCubed data.:(a) from the Hg-Clean algorithm; (b) from the proposed model estimator. These two images are displayed by
the logarithmic scaling with CASA parameter “scaling power cycles” of −1.3.

Figure 9. Error distributions as a function of source brightness with low dynamic range of the SKADS/SCubed data: (a) from the Hg-Clean algorithm; (b) from the
proposed model estimator. The histogram plots the points of the restored image above 35.1 uJy, 152.1 uJy, and 250 uJy at all the locations of the true source pixels,
respectively. The corresponding Gaussian functions are fitted to these histograms without the position of 1.0.

Figure 7. Simulation of the SKADS/SCubed data: (a) the reference image which is displayed only from 7 uJy to 10 uJy for more faint sources; (b) the dirty image
with a natural weighting displayed at the full date range.
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proposed model estimator with non-unique loop gains and a
separation mechanism of signal and noise that can reconstruct
the signal more accurately to effectively reduce CLEAN bias.

4.3. Discussion

The elimination of PSF is a problem that must be solved in
the field of astronomical imaging (Jia et al. 2017; Thompson
et al. 2017; Sun et al. 2021). The key idea of this work is to do
the separation between noise and compact sources to realize the
goal of restoring faint compact sources. In these experiments,
we demonstrated the work from different perspectives using
different data.

Random noise vs confusion noise: When using a telescope
array to measure astronomical data, various types of noise can
enter the data and become intertwined with it. The presence of
noise can greatly impact the accuracy of the reconstruction
process, particularly when dealing with data that exhibits low
signal-to-noise ratio. Recovering an emission from compact
sources in the presence of noise is especially challenging
because both noise and compact sources can be accurately
represented by delta functions.

Furthermore, the confusion noise introduced by the PSF and
the reconstruction process itself present a significant challenge
to the reconstruction of astronomical data. Fortunately,
compact emission and confusion noise can both be represented
using the same function. The key to achieving deep
reconstructions and enabling high dynamic range imaging,
such as in the case of Epoch of Reionization (EoR) imaging

(Bonaldi 2018), lies in separating the different sources of noise
and emission.
In summary, the separation of different types of noise and

sources is a crucial step in the accurate reconstruction of
astronomical data, particularly in the presence of noise and
confusion noise. By employing appropriate methods to separate
these sources, we can achieve high-quality reconstructions and
uncover new insights into the workings of the universe.
Reconstruction of faint compact emission: The reconstruc-

tion problem of faint compact emission has always been a
considerable challenge. As mentioned above, both noise and
compact emission can be represented perfectly by delta
functions. Therefore, to reconstruct faint compact emission,
the sources must be separated from the noise. Random noise
and true emission have significantly different statistical
characteristics, which allow us to separate them using an
appropriate separation mechanism. As in Figure 1, the
denoizing method effectively separates noise from sources.
This allows the sources to be reconstructed more accurately.
From the first experiment (see Figure 3), it can be seen that the
proposed model estimator can effectively restore compact
sources under the noise, but the traditional method finds it
difficult to do that. At the same time, these experiments used
the reference distributions from noisy low-density compact
emission to noisy crowded compact emission, and the
experiments showed that the proposed model estimator was
able to perform well at different densities.
Signal-to-noise separation versus sources of outlier fields: In

the experiment, the amount of noise added is displayed in the
second column of Table 5. Considering the previous experi-
ments in this paper, it can be concluded that the Dn-Clean
method is more accurate in recovering the number of sources
and has less CLEAN bias, and its residual rms is closer to the
added noise. This clearly demonstrates that our method has
better signal-to-noise separation capability.
However, it is also worth noting that the residual rms of Dn-

Clean is still not exactly the same as the added noise rms in
Table 5. This may be due to two main reasons. First, the
sidelobe effect of outlier fields.8 In our experiment, we chose

Figure 10. Error distributions as a function of source brightness with high dynamic range of the SKADS/SCubed data: (a) from the Hg-Clean algorithm; (b) from the
proposed model estimator. The histogram plots the points of the restored image above 35.1 uJy, 152.1 uJy, and 250 uJy at all the locations of the true source pixels,
respectively. The corresponding Gaussian functions are fitted to these histograms without the position of 1.0.

Table 4
Source Number and Mean Value of Error Distributions of SKADS/SCubed

Simulation Data with High Dynamic Range

s > 35.1 uJy s > 152.1 uJy s > 250.0 uJy

Algorithms Number Mean Number Mean Number Mean
Hg-Clean 1991 0.930 596 0.995 380 1.006
Dn-Clean 5519 1.007 607 1.004 348 1.009

Note. “Number” of reconstructed sources is counted at all true source pixels of
the reference image. ``Mean'' is the Mean Value of Error Distributions.

8 https://casaguides.nrao.edu/index.php?title=VLA_CASA_Imaging-
CASA6.5.2#Imaging_Outlier_Fields
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dense point sources from SKADS/Scubed simulation data and
used masking techniques to prevent edge effects, which
resulted in no deconvolution of the 15 pixels near the edge.
The psf sidelobe effect of sources in this region may affect the
middle sources, which could be a reason why the residual rms
of Dn-Clean is higher than the original (added) noise rms.
Second, there are a small number of extended sources within
the field of view of SKADS/Scubed simulated survey data, and
the Dn-Clean algorithm based on scale-free decomposition is
unable to accurately model the extended features (Zhang et al.
2020). Overall, the Dn-Clean method has better signal-to-noise
separation capabilities.

Stopping threshold and Over-CLEANing: The noise and
compact emission have the same correlation length (the order
of the resolution element), so that they cannot be separated
using the correlation length. The traditional approach is to use
an amplitude threshold to separate compact emission from the
noise. Such a traditional stopping threshold method can only
accurately separate compact emission that is significantly
higher than the noise level. Compact emission below the noise
level cannot be recovered. If deconvolution goes too deep
(over-CLEANing), then a large amount of noise that is
indistinguishable from true compact emission enters the model
image, so that the reconstructed model image is far from the
potential true sky image. From the second experiment, Figure 6
and Table 2 show that our method has better reconstruction
performance at different noise threshold levels.

Different noise levels: Different noise levels often signifi-
cantly affect the quality of the reconstructed images. In the
second experiment, we tested the performance of the proposed
model estimators and the traditional Hg-Clean method with the
distribution of the same compact emission at different noise
levels. Figure 6 and Table 1 show that as the signal-to-noise
ratio decreases, a large amount of noise has entered the images
reconstructed by the traditional deconvolution method, but the
proposed model estimator has not been significantly affected.

CLEAN bias: Clean bias, which is common in the case of
crowded compact sources, is a phenomenon where the
reconstructed emission tends to be lower than expected values.
In the test with this SKADS/SCubed simulation data, in
Figures 9–10 and Tables 3–4 it can be seen that the traditional
Hg-Clean algorithm has shown significant CLEAN bias in the
cases of different dynamic ranges but the proposed estimator
does not.

Reconstruction for Stokes-I images: In our method, a more
accurate model of a Stokes-I image is reconstructed by a
denoizing algorithm used to separate sources from noise and
non-unique loop gains used to prevent negative components
from entering the reconstructed model. In Stokes-I image
reconstruction, the negative components are necessary for the
reconstruction process (Zhang et al. 2020) but its model image
physically requires a positive component. Therefore, a smaller
loop gain is used to suppress negative components from
entering the model.

5. Summary

CLEAN-based algorithms are already a general method of
compact-emission reconstruction. This method uses the delta
functions to represent compact emission, which is theoretically
perfect when the noise is negligible. Therefore, this method can
well-reconstruct compact emission in the case of high signal-to-
noise ratio. However, when the noise is not negligible or the
compact emission below the noise level needs to be restored,
this method experiences great difficulty. The root cause is that
there is no good strategy for separating signals from noise in
this method. In this work, we propose a new model estimator,
which can effectively separate noise and the sources, and
estimate compact emission from a noisy dirty image. This
model estimator still uses the delta functions as the basic model
for compact-emission parameterization. At the same time, the
filtering-based strategy is introduced to separate signals and
noise, so that faint sources are visible during the reconstruction
process. Building upon this work, there are opportunities for
technical innovations in specific applications such as deep field
imaging, and to further develop comprehensive methodologies
in these areas. This may also involve comparative studies with
other existing probabilistic approaches of noise/source char-
acterization. In addition to filtering-based denoizing, there are
still other methods that may be used to solve this problem, such
as eigenvalue decomposition (Briggs 1995; Rau 2010; Guo
et al. 2016). Experiments show that the proposed model
estimator is very effective for the reconstruction of a noisy
compact emission. The code will be made publicly available.9

In this work, we focus on the case of narrow-band observations
with noisy compact emission, but the wide-band wide-field
imaging or a situation with diffuse emission will bring new
problems, which is also part of our future work plan.
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