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Abstract

The Weibull distribution has been extensively studied and applied across various fields due to its versatility
in modeling a wide range of phenomena, especially in reliability engineering, survival analysis, and lifetime
modeling. The concept of R|a,b, which represents a system’s reliability in a conditional stress-strength setup,
was proposed by Sabre and Khorshidian (2021). In this research, the problem of estimating reliability of
the component is considered when strength variable X and stress variable Y follow independent Weibull
distributions with common shapes and different scale parameters under conditional stress-strength setup.
The maximum likelihood estimator, asymptotic confidence interval, Bootstrap estimators, Boot-p estimators,
and Bayes estimator under-squared error loss function with associated highest posterior density interval are
constructed for conditional stress-strength reliability. Simulation study is conducted to estimate mean square
error (MSE) of estimator of conditional stress-strength reliability. The real data analysis is also carried out.
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1 Introduction

The capacity of a system or component to carry out a necessary task in a particular environment for a
predetermined amount of time is known as reliability. In other words, reliability is the probability that the
system will perform satisfactorily for intended period of time. The well-known stress - strength reliability model
compares the strength and stress on a certain system. The stress - strength reliability is defined as R = P (X > Y )
where X denotes strength of a component and Y denotes the stress. In the stress-strength modeling, R is a
measure of component reliability when it is subjected to random stress Y and has strength X. Therefore R
and (1 − R) indicate the system performance and probability of system failure respectively. For example, in
the event that Y denotes a treatment group and X represents the response for the control group, R represents
the treatment’s impact.It is not necessary for Stress and Strength to be associated in any way because of their
nature. Consequently, a number of authors used the premise that X and Y are independent variables to draw
conclusions regarding P (X < Y ). Applications of reliability can be found in many fields, including engineering,
biostatistics, quality control, economics, psychology, and medicine.

It is said that Church and Harris(1970) [1] first used the term ”stress-strength.” There are several published
studies that looked at different alternatives for distributions of stress and strength. The initial work by Owen
et al (1964) [2] focused on constructing confidence limits for the probability P (X < Y ) assuming dependence
or independence between normally distributed random variables X and Y. Subsequent research expanded the
estimation of this probability for various distributions, including exponential, normal, Pareto, and even broader
exponential families. For instance, Kelly et al (1976) [3], Tong (1974) [4], Church and Harris (1970) [1], Beg
and Singh (1979) [5], and Tong (1977) [6] contributed to estimating P (X < Y ) under different distributional
assumptions. The introduction of time-dependent models by Bilikam (1985) [7] was a significant step. Bilikam’s
model considered stress and strength as continuous random processes. In this framework, X and Y were assumed
to be stochastically independent but related through time-dependent parameters θ1(t) and θ2(t). Erylmaz S
(2011) [8] investigated stress-strength reliability within the framework of multi-state system modeling. Recently,
Pandit and Joshi (2018) [9] studied stress - strength reliability for generalized Pareto distribution.

In usual situation it is known that X and Y are bigger than two fixed values. Especially, when X and Y are two
components of the system, and these two components have been worked till a known time, and need to draw
inference on R. For purposes of illustration, a vehicle with an engine and brakes is taken into consideration. The
engine is thought of as a strength component in the vehicle, and the brake is thought of as a stress component.
The engine’s lifetime is represented by X, while the brake’s is represented by Y. The vehicle will run if the
engine is more powerful than the brake, which means the vehicle will run if and only if P (X > Y ) is true. Since
it is assumed that the vehicle has been driven for an hour, P (X > Y |X > 1, Y > 1) is used to evaluate how
reliable the vehicle’s performance is. Furthermore, in the circumstance when the engine has been turned on for
30 minutes before driving, the suitable measure of reliability is P (X > Y |X > 1.5, Y > 1). (Refer Saber and
Khorshidian(2021) ). Motivated by this, Saber and Khorshidian(2021) [10] introduced the conditional stress -
strength reliability R|a,b.

Later researchers such as Raid et al (2021) [11], and Sabre et al (2021) [12] have attempted to estimate reliability
under a conditional stress-strength setup in recent years. They evaluated the system’s reliability in a conditional
stress-strength setup where the stress-strength variable follows Kumaraswamy, and Generalised exponential
lifetime distributions. In all these studies the authors considered the estimation of reliability using classical
and Bayesian approaches. They also considered bootstrap confidence intervals. In a conditional stress-strength
setup, a system’s reliability is represented by R|a,b was introduced by Saber and Khorshidian (2021). The
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reliability under conditional stress-strength reliability is given by:

R|a,b = P (X > Y |X > a, Y > b) =



F̄Y (b)−
∫∞
b FX (y)fY (y)dy

F̄X (b)F̄Y (b)
a = b

F̄Y (b)−
∫∞
b FX (y)fY (y)dy

F̄X (a)F̄Y (b)
a < b

∫∞
a FY (x)fX (x)dx−FY (b)F̄X (a)

F̄X (a)F̄Y (b)
a > b

(1.1)

The Weibull distribution is widely researched and utilized in different domains for its capacity to predict a board
spectrum of occurrences, particularly in reliability engineering, survival analysis, and lifetime modeling. Its high
flexibility and wide range of shapes allow it to have failure rates that are increasing constant, and decreasing.
As a result, it has a wide range of uses, including in hydrology, industrial engineering, weather forecasting, and
insurance. The Weibull distribution with parameter (γ, θ) is denoted by W (γ, θ). The cumulative distribution
function (cdf) and the probability density function (pdf) of this distribution are, respectively,

F (z) = 1− e(−γzθ), z > 0, γ, θ > 0 (1.2)

And
f(z) = γθzθ−1e(−γzθ), z > 0, γ, θ > 0 (1.3)

Nelson (1982) [13] used the Weibull distribution in reliability engineering. Krishnamoorthy et. al (2010)
[14] constructed confidence interval for reliability involving Weibull models. Kundu and Gupta (2006) [15]
studied the estimate of R = P (Y < X) where X ∼ W (α, θ1) and X ∼ W (α, θ2) are two independent Weibull
distributions with distinct scale parameters but the same shape parameter. But this paper studies the conditional
stress–strength model for Weibull distribution.

The remainder of this paper is structured as follows: Section 2 discusses how R|a,b is derived in the case of the
Weibull distribution. Section 3 presents the Maximum Likelihood estimator (MLE) of reliability, R|a,b , along
with its associated asymptotic distribution and confidence interval. Section 4 considers the bootstrap method
used to estimate R|a,b and construct dependability confidence intervals. The Bayesian technique to reliability
estimate is discussed in Section 5. Sections 6 and 7 present the simulation findings and real data analysis,
respectively.

2 Conditional Stress – Strength Reliability for
Weibull Distribution

When the variable strength (X) and stress (Y) are independently distributed with W (γ1, θ) and W (γ2, θ),
respectively, the conditional reliability of the stress-strength model is derived in this section. Below is a result
representing the reliability in a conditional stress-strength set-up.

Result: Let X and Y be independent random variables from the Weibull distributions with parameters (γ1, θ)
and (γ2, θ) respectively, that is X ∼ W (γ1, θ) and Y ∼ W (γ2, θ). Based on conditional stress - strength model,
the reliability R|a,b is given by:

R|a,b =



γ2
γ1+γ2

a = b

γ2
γ1+γ2

e−γ1(bθ−aθ) a < b

1− γ1
γ1+γ2

e−γ2(aθ−bθ) a > b

(2.1)

Proof: Suppose the strength variable X follows W (γ1, θ) and stress variable Y follows W (γ2, θ) distributions.
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Case a = b: The reliability under conditional stress - strength set up, R|a,b can be derived from (1.1), (1.2),
(1.3) as

R|a,b =
F̄Y (b)−

∫∞
b
FX(y)fY (y)dy

F̄X(b)F̄Y (b)
=

γ2

γ1 + γ2
(2.2)

Case a < b : The reliability under conditional stress - strength set up, R|a,b can be derived from (1.1), (1.2),
(1.3) as

R|a,b =
F̄Y (b)−

∫∞
b
FX(y)fY (y)dy

F̄X(a)F̄Y (b)
=

γ2

γ1 + γ2
e−γ1(bθ−aθ) (2.3)

Case a > b: The reliability under conditional stress - strength set up, R|a,b can be derived from (1.1), (1.2), (1.3)
as

R|a,b =

∫∞
a
FY (x)fX(x)dx− FY (b)F̄X(a)

F̄X(a)F̄Y (b)
=

λ2

λ1 + λ2
eλ1(ea

θ
−eb

θ
) = 1− γ1

γ1 + γ2
e−γ2(aθ−bθ) (2.4)

Combining (2.2), (2.3), and (2.4) together we get (2.1).

3 Likelihood Inference of Conditional Reliability

This section deduces the maximum likelihood estimator (MLE) ofR|a,b and establishes the asymptotic distribution
of the MLE of R|a,b. The confidence intervals are constructed using the asymptotic distribution of MLE of R|a,b.
Suppose that two random samples, (X1, X2, ...Xn) and (Y1, Y2, ...Ym), of size n and m, respectively, from W (γ1, θ)
and W (γ2, θ). The likelihood function for X and Y respectively given in (3.1) and (3.2).

L(γ1, θ|x) = γn1 θ
n

(
n∏
i=1

xθ−1
i

)
e
∑n
i=1 −γ1x

θ
i (3.1)

L(γ2, θ|y) = γm2 θ
m

(
m∏
i=1

yθ−1
i

)
e
∑m
i=1 −γ2y

θ
i (3.2)

Then, the joint log-likelihood function is given by

l(γ1, γ2, θ|x, y) = n log γ1 +m log γ2 + (n+m) log θ − γ1

n∑
i=1

xθi

− γ2

m∑
i=1

yθi + (θ − 1)

(
n∑
i=1

log xi +

m∑
i=1

log yi

)
(3.3)

The likelihood equations are obtained as

∂l

∂γ1
=

n

γ1
−

n∑
i=1

xθi = 0 (3.4)

∂l

∂γ2
=
m

γ2
−

m∑
i=1

yθi = 0 (3.5)

∂l

∂θ
=

m+ n

θ
+

n∑
i=1

log xi +
m∑
i=1

log yi − γ1

n∑
i=1

xθi log xi − γ2

m∑
i=1

yθi log yi = 0 (3.6)
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The MLE of the parameters γ1 and γ2 are given by

γ̂1 =
n∑n
i=1 x

θ̂
i

(3.7)

γ̂2 =
m∑m
i=1 y

θ̂
i

(3.8)

And θ̂ is the MLE of the parameter θ which is obtained by solving non-linear equation (3.9)

h(θ) = (n + m)

{
γ̂1

n∑
i=1

xθi log xi + γ̂2

m∑
i=1

yθi log yi −
n∑
i=1

log xi −
m∑
i=1

log yi

}−1

(3.9)

The solution θ̂ to a nonlinear equation (3.9) can be found through an iterative process. This process continues
until the difference between consecutive values of θj and θj+1 becomes sufficiently small that is |θj − θj+1| is
very small. This indicates that the iterations have reached a point where terminating them is appropriate, as
they have likely converged to the solution. The MLE of R|a,b is obtained as

ˆR|a,b =



γ̂2
γ̂1+γ̂2

a = b

γ̂2
γ̂1+γ̂2

e
ˆ−γ1(bθ̂−aθ̂) a < b

1− γ̂1
γ̂1+γ̂2

e
ˆ−γ2(aθ̂−bθ̂) a > b

(3.10)

Asymptotic Confidence Interval

The asymptotic distributions of β̂ =
(
γ̂1, γ̂2, θ̂

)
and R|a,b are determined. The Fisher information matrix of

β = (γ1, γ2, θ), denoted as I(β) = E(JI(β)), where J(β) = [Ji,j ]i,j=1,2,3 represents the observed information
matrix. The information matrix J(β) is given by:

J(β) = −



∂2l(γ1,γ2,θ)

∂γ21

∂2l(γ1,γ2,θ)
∂γ1∂γ2

∂2l(γ1,γ2,θ)
∂γ1∂θ

∂2l(γ1,γ2,θ)
∂γ2∂γ1

∂2l(γ1,γ2,θ)

∂γ22

∂2l(γ1,γ2,θ)
∂γ2∂θ

∂2l(γ1,γ2,θ)
∂θ∂γ1

∂2l(γ1,γ2,θ)
∂θ∂γ2

∂2l(γ1,γ2,θ)

∂θ2

 =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 (3.11)

and the elements of J(β) are as follows:

J11 = − n
γ21

J22 = − m
γ22

J12 = J21 = 0;

J13 = J31 = −
∑n
i=1 x

θ
i log xi;

J23 = J32 = −
∑m
i=1 y

θ
i log yi;

J33 = −n+m
θ2
− γ1

∑n
i=1 x

θ
i (log xi)

2 − γ2

∑m
i=1 y

θ
i (log yi)

2

The components of the Fisher information matrix are derived by computing the expected values of the observed
matrix J(β), expressed as I(β) = E[J(β)]. This Fisher information matrix I(β) can be computed as

I(β) =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 (3.12)

32



Architha and Pandit; Asian J. Prob. Stat., vol. 26, no. 3, pp. 28-43, 2024; Article no.AJPAS.114033

Where
I11 = −E(J11) = n

γ21

I12 = I21 = −E(J12) = −E(J21) = 0

I13 = J31 = −E(J13) = −E(J31) = E(
∑n
i=1 x

θ
i log xi)

I22 = −E(I22) = m
γ22

I23 = I32 = −E(J23) = −E(J32) = E(
∑m
i=1 y

θ
i log yi)

I33 = −E(J33) = n+m
θ2

+ γ1E
(∑n

i=1 x
θ
i (log xi)

2
)

+ γ2E
(∑m

i=1 y
θ
i (log yi)

2
)

As n→∞ and m→∞, then by using of multivariate central limit theorem (CLT) of θ̂, we have θ̂ → N3 (θ,Σ)

where θ̂ =
(
λ̂1, λ̂2, β̂

)
and Σ is inverse of the Fisher information matrix:

Σ =
1

det I(β)

 I22I33 − I32I23 I13I32 − I12I33 I12I23 − I13I22

I23I31 − I21I33 I11I33 − I13I31 I13I21 − I11I23

I21I32 − I22I31 I12I31 − I11I32 I11I22 − I12I21

 (3.13)

The asymptotic distribution of R|a,b is derived by employing the multivariate Delta approach as outlined in the
following lemma.

Lemma: Consider a sequence {Xn}∞n=1 of random vectors converging in distribution to Nk(µ,Σ) i.e. Xn →
Nk(µ,Σ) . Let g(x) : Rk → R be a function continuous in its first partial derivatives, and let σ2 = ∆TΣ∆ > 0,

where ∆ = ∂g(µ)
∂µ

. Then, g(Xn)−g(µ)
σ

→ N(0, 1)

Result: As sample size increases, R̂|a,b−Ra,b
σ

converges in distribution to a standard normal distribution.
Mathematically, As n→∞ and m→∞, then

R̂|a,b −Ra,b

σ

d→ N(0, 1) (3.14)

Here, σ2 is obtained with the help of g(β)Σg(β)T for different cases a = b, a < b, a > b.
Also β = (λ1, λ2, β), and g(β) denotes the derivative of R|a,b with respect to β. It’s represented as g(β) =(
∂R|a,b

∂γ1
, ∂R

|a,b

∂γ2
, ∂R

|a,b

∂θ

)
. Additionally, Σ stands for the inverse of the Fisher information matrix.

Proof: Take the partial derivatives of R|a,b, as outlined in equation (2.1), with respect to γ1, γ2, and θ to
derive equations (22), (23), and (24) correspondingly.

∂R|a,b

∂γ1
=



− γ2
(γ1+γ2)2

a = b

γ2
γ1+γ2

e−γ1(bθ−aθ)
(
aθ − bθ − 1

(γ1+γ2)

)
a < b

− γ2
(γ1+γ2)2

e−γ2(aθ−bθ) a > b

(3.15)

∂R|a,b

∂γ2
=



γ1
(γ1+γ2)2

a = b

γ1
(γ1+γ2)2

e−γ1(aθ−bθ) a < b

γ1
γ1+γ2

e−γ2(bθ−aθ)
(
aθ − bθ + 1

γ1+γ2

)
a > b

(3.16)

∂R|a,b

∂θ
=



0 a = b

γ1γ2
γ1+γ2

e−γ1(bθ−aθ)
(
aθ log a− bθ log b

)
a < b

γ1γ2
γ1+γ2

e−γ2(aθ−bθ)
(
aθ log a− bθ log b

)
a > b

(3.17)
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Since (β̂ − β)→ N(β,Σ), Using Cramer’s theorem,(
g(β̂)− g(β)

)
→ N(0, g(β)Σg(β)T ) (3.18)

Where g(β) = ∂R|a,b

∂β
=
(
∂R|a,b

∂γ1
, ∂R

|a,b

∂γ2
, ∂R

|a,b

∂θ

)
The confidence interval at the (1− α)% level for R|a,b is expressed as

R|a,b ∈
(

ˆR|a,b − Z1−α
2
σ2

1 ,
ˆR|a,b + Z1−α

2
σ2

1

)
a = b

R|a,b ∈
(

ˆR|a,b − Z1−α
2
σ2

2 ,
ˆR|a,b + Z1−α

2
σ2

2

)
a < b

R|a,b ∈
(

ˆR|a,b − Z1−α
2
σ2

3 ,
ˆR|a,b + Z1−α

2
σ2

3

)
a > b

(3.19)

The values of σ2
1 , σ

2
2 , σ

2
3 are determined by evaluating g(β)Σg(β)T under various conditions namely when a = b,

when a < b, and when a > b.

4 Bootstrap Approach for R|a,b

This section examines the confidence interval for R|a,b using the parametric bootstrap method. The process of
generating parametric bootstrap samples for R|a,b, as suggested by Efron and Tibshirani (1993) [16], is detailed
here:

• Calculate γ̂1, γ̂2, θ̂, ˆR|a,b, which represent the maximum likelihood estimators (MLEs) of γ1, γ2, θ, R
|a,b,

respectively, using the samples (X1, X2, ..., Xn) and (Y1, Y2, ...Ym).

• Generate independent bootstrap samples X∗ = (X ,
1X

,
2..., X

)
n drawn from W (γ1, θ) and Y =(Y ,1Y

,
2 ...Y

)
m

drawn from W (γ2, θ). Using the bootstrap data, calculate bootstrap estimations for the parameters,
denoted as γ∗1 , γ

∗
2 , θ
∗, and R∗|a,b.

• Iterate the previously mentioned process B times to generate a series of bootstrap samples for R|a,b,
denoted as R

∗|a,b
1 , R

∗|a,b
2 , ...R

∗|a,b
B .

With the obtained bootstrap samples of R, the 100(1−α%) percentile bootstrap confidence interval for R|a,b is
constructed and presented as follows: (

R̂
∗|a,b
(α2 )

, R̂
∗|a,b
(1−α

2 )

)
(4.1)

Where R̂
∗|a,b
(α) is the quantile of order γ .

5 Bayesian Inference on Conditional Reliability

This section related to Bayes estimation of reliability within a conditional stress-strength framework. For
Bayesian studies one needs to select prior for the parameters of the distribution under study. Here the conjugate
prior is selected for the parameters of the distribution.A conjugate prior is a specific prior that results in a
posterior that shares the same distribution as the prior. The prior distribution for the parameters taken as
Gamma prior because of its conjugate nature. The prior distributions for the parameters γ1, γ2, and θ are taken
as Gamma(a1, b1), Gamma(a2, b2), and Gamma(a3, b3), respectively. It is assumed that all prior distributions
are independent. The joint prior density is given by:

π (γ1, γ2, θ) =
ba11 γa1−1

1 e−b1γ1

Γ (a1)

ba22 γa2−1
2 e−b2γ2

Γ (a2)

ba33 γa3−1
3 e−b3γ3

Γ (a3)
(5.1)

Hence, under the assumption of independence among γ1, γ2, and θ, the joint posterior density of γ1, γ2, and θ is
expressed as:

π
(
γ1, γ2θ|x, y

)
=

L
(
γ1, γ2θ|x, y

)
π(γ1)π(γ2)π(θ)∫∞

0

∫∞
0

∫∞
0
L
(
γ1, γ2θ|x, y

)
π(γ1)π(γ2)π(θ)dθdγ1dγ2

(5.2)
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Now (5.2) can be obtained using (3.1), (3.2) and (5.1)

π
(
γ1, γ2, θ|x, y

)
=

%∫∞
0

∫∞
0

∫∞
0
%dθdγ1dγ2

(5.3)

% =
γn+a1−1

1 ba11 e−γ1(b1+
∑n
i=1 x

θ
i )

Γ(a1)

γm+a2−1
2 ba22 e−γ2(b2+

∑m
i=1 y

θ
i )

Γ(a2)

θn+m+a3−1ba33 e−θb3

Γ(a3)

n∏
i=1

xθ−1
i

m∏
i=1

yθ−1
i (5.4)

The structure of the posterior density doesn’t yield a direct explicit Bayes estimator for the model parameters.
Thus, the conditional distribution of γ1, γ2, and θ can be obtained using the Gibbs sampling technique as follows:

(
γ1|γ2, θ, x, y

)
∼ Gamma

(
n+ a1, b1 +

n∑
i=1

xθi

)
(5.5)

(
γ2|γ1, θ, x, y

)
∼ Gamma

(
m+ a2, b2 +

m∑
i=1

yθi

)
(5.6)

π
(
θ|γ1, γ2, x, y

)
∝ θn+m+a3−1e−b3θ

n∏
i=1

xθ−1
i

m∏
i=1

yθ−1
i (5.7)

Use gamma distributions to generate random numbers for γ1 and γ2. Then, utilizing the ”Metropolis-Hastings
method,” generate random values for θ with a distribution proportional to N(θt−1, kθVθ), where θt−1 represents
the current value of θ, kθ is the scaling factor, and Vθ is the variance-covariance matrix. Thus, Gibbs sampling
is as follows:

1. Set t = 1 and begin with an initial guess of θ(0) = θ̂.

2. From Gamma
(
n+ a1, b1 +

∑n
i=1 x

θ
i

)
distribution, generate a random value γ

(t)
1 .

3. From Gamma
(
m+ a2, b2 +

∑m
i=1 y

θ
i

)
distribution, generate a random value γ

(t)
2 .

4. Generate θ(t) from (5.7) π
(
θ|γ1, γ2, x, y

)
using the ”Metropolis - Hastings method” with a proportional

distribution as normal distribution.

5. Determine R|a,b(t)

6. Assign t to t+1

7. Execute steps 2 to 6 repeatedly for a total of N iterations.

The approximate posterior mean and posterior variance of R|a,b are as follows:

Ê
(
R|a,b|x, y

)
=

1

N −M

N∑
t=M+1

R|a,b(t) (5.8)

and

V̂
(
R|a,b|x, y

)
=

1

N −M

N∑
t=M+1

(
R|a,b(t) − Ê

(
R|a,b|x, y

))2

(5.9)

Where M is the burn - in period (that is, a number of iterations before the stationary distribution is achieved).
Based on the R|a,b(t) value, the Chen and Shao (1999) [17] approach can be utilised to generate a 100(1− γ)%
HPD credible interval. The HPD credible interval is given as follows:(

R
|a,b
[N γ

2 ]
, R

|a,b
[N(1− γ

2
)]

)
(5.10)

where R
|a,b
[N γ

2 ]
and R

|a,b
[N(1− γ

2
)]

are the
[
N γ

2

]th
smallest integer and the

[
N(1− γ

2
)
]th

smallest integer of R|a,b(t), t =

M + 1,M + 2, ..., N , respectively.
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6 Simulation Study

In this section, a Monte Carlo simulation analysis is carried out to evaluate the performance of the point
estimators and confidence intervals constructed in this research. Confidence intervals are compared using length
and coverage probability, whereas point estimators are evaluated using mean square error.All predicted values
have been rounded to five digits after 5000 iterations. The usage of abbreviations in the tables is as follows:
MLE: Maximum Likelihood Estimation Method, Bootstrap: Bootstrap Estimation, Bayesian: Bayesian Approach,
MSE: Mean Square Error, ACI: Asymptotic Confidence interval, BPCI: Boot - percentile Confidence Interval,
HPDCI: HPD credible interval and CP: Coverage Probability. (Refer Henningsen et.al (2011) [18] for R coding).

The tables below present the findings of the simulation study.

Table 1. Point Estimation: MLE, Bootstrap and Bayesian estimators and corresponding MSE
for R|1,3

γ1 = 0.1, γ2 = 5, θ = 1.2, R|1,3 = 0.74563

2*(n, m) MLE Bootstrap Bayesian

R̂|13 MSE R̂|13 MSE R̂|13 MSE

(5, 8) 0.78488 0.01866 0.84987 0.01935 0.78249 0.001358
(8, 5) 0.74916 0.01747 0.62715 0.03286 0.66303 0.006823
(8, 8) 0.932 0.0157 0.60499 0.03728 0.72966 0.000255
(10, 15) 0.83281 0.01318 0.76163 0.00726 0.76702 0.000458
(15, 10) 0.77663 0.01328 0.72186 0.0065 0.66469 0.006552
(15, 15) 0.86497 0.01242 0.8147 0.00773 0.74278 0.000008
(25, 25) 0.84231 0.01152 0.86501 0.01543 0.70308 0.001811
(35, 25) 0.83229 0.01107 0.62369 0.01826 0.67225 0.005385
(25, 35) 0.8672 0.01106 0.74235 0.00295 0.79114 0.002071
(55, 35) 0.88557 0.01084 0.67302 0.00695 0.65436 0.008330
(35, 55) 0.80697 0.01062 0.91114 0.02781 0.81035 0.004188
(55, 55) 0.86641 0.01034 0.81503 0.00568 0.75927 0.000186

Table 2. Interval Estimation: MLE, Bootstrap and Bayesian estimators and corresponding CP
for R|1,3

γ1 = 0.1, γ2 = 5, θ = 1.2, R|1,3 = 0.74563

2*(n, m) MLE Bootstrap Bayesian
ACI CP BPCI CP HPDCI CP

(5, 8) (0.59658, 0.97318) 0.98 (0.64627, 0.97089) 1 (0.5718, 0.92795) 1
(8, 5) (0.64161, 0.85671) 0.97 (0.35054, 0.87169) 0.96 (0.38581, 0.86223) 1
(8, 8) (0.6847, 0.9993) 1 (0.32022, 0.83683) 0.99 (0.50684, 0.88681) 1
(10, 15) (0.68157, 0.88406) 0.99 (0.56917, 0.89642) 1 (0.59379, 0.89036) 0.98
(15, 10) (0.63924, 0.91402) 1 (0.55164, 0.85493) 1 (0.45146, 0.81974) 1
(15, 15) (0.65962, 0.93433) 1 (0.69796, 0.91083) 0.98 (0.57578, 0.86352) 1
(25, 25) (0.68038, 0.90424) 1 (0.78818, 0.92677) 1 (0.54429, 0.81457) 0.99
(35, 25) (0.72354, 0.92104) 0.99 (0.50469, 0.82535) 1 (0.50736, 0.78325) 1
(25, 35) (0.69659, 0.93781) 1 (0.61722, 0.83735) 1 (0.66769, 0.87162) 1
(55, 35) (0.7027, 0.91844) 1 (0.59106, 0.84571) 1 (0.45568, 0.75704) 1
(35, 55) (0.72903, 0.88492) 1 (0.86778, 0.94599) 1 (0.66245, 0.87915) 1
(55, 55) (0.7128, 0.92002) 1 (0.75187, 0.86913) 1 (0.57017, 0.83662) 1
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Fig. 1. Plot of mean square error against sample size for R|1,3

Fig. 2. Plot of length of confidence interval against sample size R|1,3

Table 3. Point Estimation: MLE, Bootstrap and Bayesian estimators and corresponding MSE
for R|1,1

γ1 = 0.3, γ2 = 2, θ = 1.2, R|1,1 = 0.86957

2*(n, m) MLE Bootstrap Bayesian

R̂|11 MSE R̂|11 MSE R̂|11 MSE

(5, 8) 0.8523 0.00695 0.86153 0.00839 0.723 0.00148
(8, 5) 0.87171 0.00639 0.89322 0.00646 0.75364 0.00344
(8, 8) 0.86785 0.0052 0.84782 0.00752 0.75601 0.00289
(10, 15) 0.93748 0.00365 0.88731 0.00313 0.72389 0.00222
(15, 10) 0.89505 0.00318 0.80344 0.00999 0.82335 0.00214
(15, 15) 0.86349 0.00272 0.96697 0.00988 0.75172 0.00389
(25, 25) 0.83223 0.00165 0.85897 0.00198 0.82459 0.00202
(35, 25) 0.91685 0.00123 0.87983 0.00144 0.82519 0.00197
(25, 35) 0.86522 0.00135 0.85666 0.00171 0.75399 0.00336
(55, 35) 0.89775 0.00081 0.88067 0.00099 0.8017 0.00461
(35, 55) 0.89498 0.00089 0.87082 0.00095 0.73925 0.00198
(55, 55) 0.87144 0.00071 0.86173 0.00084 0.83581 0.00114
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Table 4. Interval Estimation: MLE, Bootstrap and Bayesian estimators and corresponding CP
for R|1,1

γ1 = 0.3, γ2 = 2, θ = 1.2, R|1,1 = 0.86957

2*(n, m) MLE Bootstrap Bayesian
ACI CP BPCI CP HPDCI CP

(5, 8) (0.67248, 0.93201) 0.97 (0.6354, 0.9839) 1 (0.48316, 0.89854) 1
(8, 5) (0.73797, 0.95205) 0.98 (0.71134, 0.99094) 1 (0.65171, 0.98848) 1
(8, 8) (0.73088, 0.948) 0.96 (0.64733, 0.97376) 1 (0.6671, 0.98207) 1
(10, 15) (0.68575, 0.99102) 1 (0.76676, 0.97313) 1 (0.55023, 0.96188) 0.98
(15, 10) (0.64826, 0.94185) 1 (0.64299, 0.93703) 1 (0.62091, 0.93895) 1
(15, 15) (0.76507, 0.96192) 1 (0.82189, 0.99371) 1 (0.64202, 0.94291) 1
(25, 25) (0.71168, 0.95277) 1 (0.76833, 0.93231) 1 (0.7613, 0.9882) 0.99
(35, 25) (0.78455, 0.95916) 1 (0.80533, 0.94524) 1 (0.7287, 0.99056) 1
(25, 35) (0.77448, 0.95596) 1 (0.77062, 0.92582) 1 (0.6724, 0.97246) 1
(55, 35) (0.75121, 0.94429) 0.99 (0.81887, 0.93183) 1 (0.64883, 0.90622) 1
(35, 55) (0.82626, 0.96371) 0.98 (0.80376, 0.92388) 1 (0.52835, 0.88924) 1
(55, 55) (0.81896, 0.92391) 1 (0.8047, 0.91143) 1 (0.71634, 0.91979) 1

Fig. 3. Plot of mean square error against sample size for R|1,1

Fig. 4. Plot of length of confidence interval against sample size R|1,1
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Table 5. Point Estimation: MLE, Bootstrap and Bayesian estimators and corresponding MSE
for R|3,1

γ1 = 0.09, γ2 = 0.6, θ = 1.2, R|3,1 = 0.97476

2*(n, m) MLE Bootstrap Bayesian

R̂|31 MSE R̂|31 MSE R̂|31 MSE

(5, 8) 0.9687 0.00343 0.85812 0.00231 0.95885 0.000250
(8, 5) 0.98851 0.00329 0.98167 0.00059 0.83825 0.001860
(8, 8) 0.96421 0.00244 0.95606 0.00211 0.89779 0.001920
(10, 15) 0.96505 0.00179 0.96942 0.00065 0.9518 0.000530
(15, 10) 0.94228 0.00198 0.98704 0.0003 0.9489 0.000670
(15, 15) 0.97674 0.0016 0.95394 0.00123 0.97322 0.000240
(25, 25) 0.97896 0.00134 0.98662 0.00027 0.92629 0.000230
(35, 25) 0.97079 0.00136 0.99086 0.00031 0.98447 0.000940
(25, 35) 0.97354 0.00119 0.98117 0.00017 0.95824 0.000270
(55, 35) 0.87062 0.00118 0.9747 0.0002 0.9537 0.000440
(35, 55) 0.95289 0.00105 0.94802 0.00101 0.99417 0.000380
(55, 55) 0.96175 0.00101 0.96488 0.00025 0.948 0.000720

Table 6. Interval Estimation: MLE, Bootstrap and Bayesian estimators and corresponding CP
for R|3,1

γ1 = 0.09, γ2 = 0.6, θ = 1.2, R|3,1 = 0.97476

2*(n, m) MLE Bootstrap Bayesian
ACI CP BPCI CP HPDCI CP

(5, 8) (0.90464, 0.99999) 0.97 (0.81483, 0.99195) 1 (0.8977, 0.98992) 0.98
(8, 5) (0.86704, 0.99996) 0.98 (0.91424,1) 1 (0.86695, 0.9926) 1
(8, 8) (0.91003, 0.99999) 1 (0.85141, 0.99988) 1 (0.86843, 0.99659) 0.96
(10, 15) (0.92433, 0.99979) 1 (0.9053, 0.99905) 1 (0.89114, 0.98423) 1
(15, 10) (0.8685, 0.99735) 1 (0.95501, 0.9996) 1 (0.86078, 0.98171) 1
(15, 15) (0.94874, 0.9974) 0.99 (0.88348, 0.99366) 1 (0.93811, 0.98922) 1
(25, 25) (0.96476, 0.99316) 1 (0.95689, 0.99937) 1 (0.94116, 0.99994) 1
(35, 25) (0.89482, 0.99677) 1 (0.9731, 0.99918) 1 (0.94379, 0.99314) 0.99
(25, 35) (0.95388, 0.9932) 1 (0.95416, 0.99748) 1 (0.92852, 0.98775) 1
(55, 35) (0.86689, 0.99435) 1 (0.94198, 0.99566) 1 (0.92313, 0.98316) 1
(35, 55) (0.92614, 0.99765) 1 (0.91049, 0.97787) 1 (0.89903, 0.99878) 1
(55, 55) (0.93624, 0.98726) 1 (0.9383, 0.98585) 1 (0.91228, 0.98095) 1

Fig. 5. Plot of mean square error against sample size for R|3,1
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Fig. 6. Plot of length of confidence interval against sample size R|3,1

From the simulation study, it is observed that

1. MSE’s of MLEs decreased as sample size increases.

2. Bayesian methods often showed lower MSE as compared to MLE and Bootstrap.

3. As sample size increases, length of the confidence interval is shortened.

7 Data Analysis

This section is about real data analysis. Badar and Priest (1982) [19] published the first data on fibre strength
(in GPA). The data provide the strength values measured in GPA for single carbon Fibre and impregnated
1000-carbon Fibre tows. Single fibres were tension tested at gauge lengths of 1, 10, 20, and 50mm. Impregnated
tows of 1000 Fibre were tested at gauge lengths of 20, 50, 150, and 300. The two data sets presented here are
for single fibres tested under tension at gauge lengths of 10 mm (Data I) and 20 mm (Data II), with sample
sizes of n = 63 and m = 69, respectively.

Data I: 1.901, 2.132, 2.203,
2.228, 2.257, 2.350, 2.361, 2.396,
2.397, 2.445, 2.454, 2.474, 2.518,
2.522, 2.525, 2.532, 2.575, 2.614,
2.616, 2.618, 2.624, 2.659, 2.675,
2.738, 2.740, 2.856, 2.917, 2.928,
2.937, 2.937, 2.977 2.996 3.030,
3.125, 3.139, 3.145, 3.220, 3.223,
3.235, 3.243, 3.264, 3.272, 3.294,
3.332, 3.346, 3.377 3.408 3.435
3.493, 3.501, 3.537, 3.554, 3.562,
3.628, 3.852, 3.871, 3.886, 3.971,
4.024, 4.027, 4.225, 4.395, 5.020

Data II: 1.312, 1.314, 1.479,
1.552, 1.700, 1.803, 1.861, 1.865,
1.944, 1.958, 1.966, 1.997, 2.006,
2.021, 2.027, 2.055, 2.063, 2.098,
2.140, 2.179, 2.224, 2.240, 2.253,
2.270, 2.272, 2.274, 2.301, 2.301,
2.359, 2.382, 2.382, 2.426, 2.434,
2.435, 2.478, 2.490, 2.511, 2.514,
2.535, 2.554, 2.566, 2.570, 2.586,
2.629, 2.633, 2.642, 2.648, 2.684,
2.697, 2.726, 2.770 2.773 2.800
2.809, 2.818, 2.821, 2.848, 2.880,
2.954, 3.012, 3.067, 3.084, 3.090,
3.096, 3.128, 3.233, 3.433, 3.585,
3.585..
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Fig. 7. Plot of goodness of fit for Data I

Fig. 8. Plot of goodness of fit for Data II

From the goodness of fit graphs (Figure 7 and Figure 8), it can be observe that Weibull distribution fits the
data. Further, tested the model’s validity using the Kolmogorov-Smirnov (K-S) test for each data set. The K-S
distances (p-value) for data sets I and II were found to be 0.087616 (0.7188) and 0.056128 (0.9816). Based on
K-S distance and p-value it can be concluded that the Weibull distribution fits the both data sets. The estimated
parameters are γ̂1 = 0.001787 , γ̂2 = 0.006032 and θ̂ = 5.2619. The R|a,b estimated under the proposed estimation
methods namely, the maximum likelihood estimation, Bootstrap estimation, and Bayes estimation and results
are given in table 7. The asymptotic confidence interval (ACI), Boot P confidence interval (BPCI) and HPD
credible interval (HPDCI) are also constructed and produced in table 7. It can be observed that the outcomes
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of the MLE and Bootstrap methods are equivalent in terms of point estimation and that the confidence intervals
for Bayes estimation and Bootstrap estimation are similar in terms of length.

Table 7. Results of Data Analysis

Method R|a,b Confidence Interval

MLE R̂
|1.9,1.3
mle = 0.80387 ACI = (0.74416, 0.86357)

Bootstrap R̂
|1.9,1.3
boot = 0.80316 BPCI = (0.73191, 0.86254)

Bayes R̂
|1.9,1.3
Bayes = 0.74735 HPDCI = (0.67788, 0.81274)

8 Conclusions

In the field of reliability research, the conditional stress-strength model stands out as an innovative extension
of the stress-strength model. This particular investigation aims to estimate the reliability under conditional
stress-strength scenarios, assuming the stress and strength parameters follows Weibull distributions with same
shape parameters but distinct scale parameters. The study employs maximum likelihood estimation, bootstrap
estimation and Bayesian approaches to determine the distribution parameters and the conditional reliability.
Confidence intervals for conditional reliability are constructed through the MLE and bootstrap method, while
HPD credible intervals are also established using Bayesian approach. To illustrate, a simulation study is
conducted, revealing that with an increase in sample size, the lengths of the intervals tend to decrease. Moreover,
the Mean Squared Error (MSE) of the Bayesian estimates frequently proves to be lower than that of the Maximum
Likelihood Estimator (MLE) as well as bootstrap. It is also observed that, the MSE of the MLE decreases as
the sample size grows, demonstrating the consistency of this estimator. A real data analysis is also carried out
as an application of the same.
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