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Introduction: Mild cognitive impairment (MCI) is a common symptom observed

in individuals with Parkinson’s disease (PD) and a main risk factor for progressing

to dementia. Our objective was to identify early anatomical brain changes that

precede the transition from healthy cognition to MCI in PD.

Methods: Structural T1-weighted magnetic resonance imaging data of PD

patients with healthy cognition at baseline were downloaded from the

Parkinson’s Progression Markers Initiative database. Patients were divided into

two groups based on the annual cognitive assessments over a 5-year time span:

(i) PD patients with unstable healthy cognition who developed MCI over a 5-

year follow-up (PD-UHC, n = 52), and (ii) PD patients who maintained stable

healthy cognitive function over the same period (PD-SHC, n = 52). These 52

PD-SHC were selected among 192 PD-SHC patients using propensity score

matching method to have similar demographic and clinical characteristics with

PD-UHC at baseline. Seventy-five percent of these were used to train a support

vector machine (SVM) algorithm to distinguish between the PD-UHC and PD-

SHC groups, and tested on the remaining 25% of individuals. Shapley Additive

Explanations (SHAP) feature analysis was utilized to identify the most informative

brain regions in SVM classifier.

Results: The average accuracy of classifying PD-UHC vs. PD-SHC was 80.76%,

with 82.05% sensitivity and 79.48% specificity using 10-fold cross-validation. The

performance was similar in the hold-out test sets with all accuracy, sensitivity,

and specificity at 76.92%. SHAP analysis showed that the most influential brain

regions in the prediction model were located in the frontal, occipital, and

cerebellar regions as well as midbrain.

Discussion: Our machine learning-based analysis yielded promising results in

identifying PD individuals who are at risk of cognitive decline from the earliest

disease stage and revealed the brain regions which may be linked to the

prospective cognitive decline in PD before clinical symptoms emerge.

KEYWORDS

prognosis, mild cognitive impairment, voxel-based morphometry, Parkinson’s disease,
support vector machine, machine learning

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1375395
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1375395&domain=pdf&date_stamp=2024-04-18
https://doi.org/10.3389/fnins.2024.1375395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1375395/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1375395 April 15, 2024 Time: 17:36 # 2

Beheshti and Ko 10.3389/fnins.2024.1375395

1 Introduction

Parkinson’s disease (PD), affecting 2%–3% of the population
aged 65 and older, is the second-most common neurodegenerative
disorder (Poewe et al., 2017). PD is identified by a variety
of motor difficulties including stiffness, shaking, and slowness
(Sveinbjornsdottir, 2016). PD patients are also at risk of developing
non-motor symptoms, such as cognitive impairment, which can
have a major effect on healthcare system, the quality of life of
the patient and their family (Chaudhuri et al., 2006; Svenningsson
et al., 2012). Cross-sectional studies have documented that about
30% of PD patients are associated with dementia, and 20%–
25% of them have mild cognitive impairment (MCI) at the time
of diagnosis (Aarsland et al., 2005). Longitudinal studies have
reported that, on average, 50% of PD patients are at risk of
developing dementia within a decade and this likelihood increases
with age (Williams-Gray et al., 2013; Aarsland et al., 2017).
In PD, cognitive decline is usually indicated by challenges in
executive function (such as organizing, planning, and prioritizing
tasks), a slower rate of cognitive processing, attention deficits,
impairment of compromised visuospatial abilities and working
memory (Chaudhuri et al., 2006; Svenningsson et al., 2012).
Notably, PD patients with MCI (PD-MCI) are particularly prone
to developing dementia (Aarsland and Kurz, 2010; Pedersen et al.,
2013; Aarsland et al., 2021). In spite of its widespread occurrence,
substantial cognitive problems in the early stages of PD are often
not recognized in clinical settings due to the complex nature
of cognitive impairment in PD, which affects multiple aspects
of cognition (Wyman-Chick et al., 2017). It is thus essential to
recognize the basis of cognitive decline in PD and its association
with brain structure and function in order to devise effective
interventions for individuals with PD.

Neuroimaging techniques are capable of identifying the
pathological changes associated with neurodegenerative diseases,
including PD (Risacher and Saykin, 2013; Politis, 2014). Magnetic
resonance imaging (MRI) is one of the most widely used
neuroimaging technique that can provide insights into the
structural changes occurring in the brain. Several studies have
used MRI to investigate the alterations in brain volume, cortical
thickness, and white matter integrity that can be linked to
cognitive decline in PD (Beyer et al., 2007; Song et al., 2011;
Mak et al., 2014; Gao et al., 2017; Devignes et al., 2021; Li
et al., 2022; Zhu et al., 2022). For example, PD-MCI patients
have shown significant atrophy in the frontotemporal cortices,
thalamus, nucleus accumbens, as well as caudate nucleus compared
to the PD patients with healthy cognition (PD-HC) (Zhou et al.,
2020). Machine learning technologies have been utilized to develop
algorithms that classify PD-MCI vs. PD-HC based on structural
T1-weighted (T1w) MRI images, and identified the right anterior
entorhinal cortex (BA 34) (Cho, 2019) and right caudate nucleus
(Shibata et al., 2022) as most contributive regions for this
classification. There have been only a limited number of studies that
have investigated the use of machine-learning methods to predict
cognitive outcomes in PD before the onset of clinical symptoms,
and these studies have primarily relied on clinical data for their
analysis (Smith et al., 2021; Harvey et al., 2022).

It is yet unknown if the brain structural changes precede
symptomatic cognitive decline. If it does, it will provide us

an opportunity to develop a prognostic biomarker, which may
be utilized in identifying susceptible individuals for preventive
interventions, which include both pharmacological and non-
pharmacological approaches targeting modifiable risk factors (Guo
et al., 2019). Early identification of individuals who will later
develop severer symptoms can significantly reduce societal burdens
related healthcare (Perron et al., 2023). Therefore, it is necessary
to examine the anatomical distinctions between PD patients
with stable healthy cognition and those who initially have stable
healthy cognition but later develop MCI, regardless of their
clinical differences. This investigation could potentially enhance
our understanding of structural brain changes in PD caused by MCI
at very early stages.

This research aims to develop an imaging-based biomarker
that differentiate PD-HC patients who later developed MCI within
5 years (unstable PD-HC; PD-UHC) from PD-HC who maintained
healthy cognitive function from baseline to 5 years (stable PD-HC;
PD-SHC). Support vector machine (SVM) classifier was trained
using baseline structural T1w MRI, and the Shapley Additive
Explanations (SHAP) feature analysis was performed to identify the
relevant brain regions for the proposed classifier.

2 Materials and methods

2.1 Dataset and sample selection

Data used in this study was obtained from the Parkinson’s
Progression Markers Initiative (PPMI) as of September 2022.
Ethical standards committees had granted approval to all PPMI
sites, and all participants had provided written consent to
participate. Additional information about the PPMI protocol
approvals, registrations, and patient consents can be found on:
https://www.ppmi-info.org/.

We acquired a dataset of 373 PD patients, which included their
baseline T1w MRI scans, age, sex, educational background, age of
symptom onset, and disease duration (time from initial diagnosis to
MRI scan), as well as motor and non-motor clinical measurements.

Parkinson’s Progression Markers Initiative T1w MRI scans have
been obtained with standardized acquisition parameters on MRI
scanners (e.g., Siemens, Philips, and GE) from different sites and
3D volumetric sequences (e.g., IR-FSPGR and MP-RAGE) in the
sagittal plane with high resolution, followed by a slice thickness of
1.2 mm or less. More details on the MRI scan acquisition protocol
in the PPMI dataset can be found at: https://www.ppmi-info.org/
study-design/research-documents-and-sops.

Motor assessment included the Unified Parkinson’s Disease
Rating Scale Part III (UPDRS-III total), UPDRS-III (total tremor),
and UPDRS-III (total rigidity) (Goetz et al., 2008). Non-
motor symptom scores included Montreal Cognitive Assessment
(MoCA), Letter Number Sequencing, Epworth Sleepiness Scale
(ESS), and Benton Judgment of Line Orientation Score (BJLO)
(Schapira et al., 2017). Mood symptoms included the Geriatric
Depression Scale (GDS) and the State-Trait Anxiety Inventory
(STAI) (Schapira et al., 2017; Bloem et al., 2021). The cognitive
status of PD patients was ascertained by evaluating variables labeled
“cogstate” and “MCI test score,” as recorded in the PPMI dataset.
The determination of cognitive status in PPMI involves evaluating
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TABLE 1 The details of primary domains utilized for assessing cognitive
status within the PPMI dataset (Wyman, 2018).

Neurological test Cognitive
function

Description

Letter Number
Sequencing (LNS)
(Tulsky and Ledbetter,
2000)

Attention and
working memory

Evaluates the ability to
sustain and direct
attention, including
instances of lapses.

Hopkins Verbal Learning
Test Revised (HVLT-R)
(Brandt, 1991)

Verbal learning and
memory

Assesses registration,
recall of recent events,
new learning ability, and
item retention.

Benton Judgment of Line
Orientation (BJLO)
(Benton and Varney,
1978)

Orientation and
visuospatial
judgment

Measures spatial
orientation, estimating
time, and forgetting
appointments.

Symbol Digit Modalities
Test (SDM) (Smith,
1973)

Executive abilities
and processing speed

Examines reasoning
ability, decision-making,
instruction-following,
and calculation
difficulty.

Semantic Fluency (SF)
(Kim et al., 2019)

Language and verbal
ability

Identifies word-finding
problems and issues with
naming or
comprehension.

different key domains: executive abilities, attention, memory,
orientation, and language (Table 1). In the PPMI dataset, the
“cogstate” variable categorizes the cognitive status of subjects into
three categories: normal cognition, MCI, and dementia. Normal
cognition is defined as individuals exhibiting intact cognitive
functioning and typical cognitive abilities. Following the Level
I MDS Task Force MCI definition, MCI is defined as having
impairment in at least one cognitive domain, yet it does not have
a noticeable impact on daily functioning. In contrast, dementia is
diagnosed when there is impairment in functioning across multiple
cognitive domains and a significant impact on daily life. More
information on cognitive status evaluation in the PPMI dataset is
available at https://www.ppmi-info.org. Over the course of the 5-
year follow-up, we monitored changes in the “cogstate” variable
for each patient. The CogState has demonstrated its sensitivity in
recognizing cognitive impairment in numerous neurodegenerative
disorders (Hammers et al., 2012; Lim et al., 2012). Using our search
criteria, we identified 52 PD-UHC (PD patients who exhibited
normal cognitive function at the baseline but progressed to MCI
within 5 years) and 192 PD-SHC (PD patients who maintained
healthy cognitive status within a 5-year time span from the
baseline).

In the PD-UHC group, the conversion from normal cognition
to MCI occurred from 1 to 5 years after baseline with a mean of
3.23 (±1.32 years). PD patients showing any fluctuations in their
cognitive status (i.e., reverters) were not included in the study. All
PD Patients used in this study were diagnosed with idiopathic PD
and did not have any other neurological disorders.

To balance the sample sizes between groups and to ensure that
the developed classifier is only sensitive to the brain structural
abnormality and unbiased to other baseline differences between
PD-UHC and PD-SHC, we selected a subset of PD-SHC to match
PD-UHC using propensity score matching. The matching process

involved aligning the two groups based on criteria that included
baseline items such as chronological age, education level, age of
symptom onset, disease duration, UPDRS-III (total), UPDRS-III
(total tremor), UPDRS-III (total rigidity), MoCA, depression, and
anxiety. Propensity score matching was done using the pymatch
package in Python.1 This package employs logistic regression
models to generate propensity scores and facilitate the matching
of the two groups. Following propensity score matching, 52 PD-
SHC patients with similar clinical and demographic characteristics
to 52 PD-UHC were selected for further analysis. This study
was approved by the Health Research Ethics Board of the
University of Manitoba.

2.2 MRI pre-processing and feature
extraction

The MRI pre-processing was performed using the CAT12
Toolbox2 within the framework of Statistical Parametric Mapping
Software Version 12.3 CAT12 is recognized as a prominent toolbox
for voxel-based morphometry (VBM) analysis (Farokhian et al.,
2017). Furthermore, it allows for the performance of regional
analyses via region-based morphometry (RBM). In this scenario,
CAT12 utilizes spatial registration parameters from voxel-based
processing to align volumetric atlases onto individual brains.
This feature facilitates the determination of volumetric measures,
including regional gray matter volume, for each region of interest
(ROI) within its native space. Further details regarding the CAT12
pipeline can be found in Gaser et al. (2022). The MRI pre-
processing was performed using the default settings in CAT12. By
utilizing the “Estimate mean values inside ROI” function in CAT12,
we extracted 170 volumetric data for gray matter (GM) based on
the Automated Anatomical Labeling Atlas 3 (AAL3) (Rolls et al.,
2020). These data were used as brain features in our prediction
model (number of features = 170). To control for the effect of
brain size, the ROI volumes of each subject from the AAL3 atlas
were divided by the respective total intracranial volume (TIV). TIV
volumes were also calculated using the CAT12 toolbox.

2.3 Classification and validation

Our prediction model was developed using SVM and
implemented in Python programming language (version 3.9.12)
with the Scikit-Learn package (version 1.1.1). Of 104 samples (52
PD-UHC and 52 PD-SHC), we randomly selected 75% of the
data as a training set (39 PD-UHC and 39 PD-SHC) to create
a model and the remaining 25% of the data as an independent
test set (13 PD-UHC and 13 PD-SHC). The prediction accuracy
and adjusting the hyperparameters of SVM within the training
set were computed using a 10-fold cross-validation strategy. The
parameter grid was defined, consisting of the kernel type (linear
or radial basis function), regularization parameter (C), and the

1 https://github.com/benmiroglio/pymatch

2 http://www.neuro.uni-jena.de/cat/

3 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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kernel coefficient (gamma). The range of the C and gamma was
set to 2 to the power of −10 up to 10 with 0.5 intervals. The
GridSearchCV function with 10-fold cross-validation was used
to conduct grid search to determine the best-performing model,
which was reported by the highest mean accuracy from the cross-
validation sets. The entire training set (N = 78) along with the
optimal kernel and hyperparameters was used to build the final
prediction model, which was then applied to independent test set
(N = 26).

To ascertain which brain regions are most influential in the
classification tasks, we employed the SHAP analysis technique.
The Shapley value is a key element of cooperative game theory
and is widely employed in predictive modeling. Shapley values
represent the individual contribution of a specific variable to a
model’s prediction, and they show how important each variable
is relative to the overall prediction (Merrick and Taly, 2020). The
Shapley values were extracted using the SHAP package in Python.4

The predictor object, comprising the finalized model and the test
dataset, was used to calculate the Shapley values of each sample with
10,000 Monte Carlo simulations. The absolute Shapley values were
then averaged across all the samples, giving an overall assessment
of the global Shapley contribution of each variable, as described in
Harvey et al. (2022).

2.4 Statistical analysis

All statistical analyses were performed using Python. Baseline
demographic, clinical variables, and brain GM volumes between
two groups were examined using two-sample t-tests. Categorical
variables underwent analysis through Chi-square tests. The
accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under
the curve (AUC) metrics were used to report the classification
performance. The P-values were adjusted using the false discovery
rate (FDR) strategy. A significance level of P < 0.05 was used to
determine the statistical significance of all tests.

3 Results

3.1 Clinical demographics

As intended by propensity score matching procedure,
the demographic characteristics and clinical scores were not
significantly different between PD-UHC and PD-SHC patients
(Table 2).

3.2 Classification performance within the
training cohort

The hyperparameters of SVM were determined through grid
search within the training set, with the kernel being a radial basis
function (RBF), the regularization parameter (C) being 32, and the
parameter for the RBF kernel in SVM (gamma) being 0.0039. An

4 https://shap.readthedocs.io/en/latest/

accuracy of 80.76% was achieved in differentiating between PD-
UHC and PD-SHC, with a sensitivity of 82.05%, a specificity of
79.48% and AUC of 0.82. Figure 1 displays the confusion matrix
and ROC for the training set, which was obtained by implementing
a 10-fold cross validation technique.

3.3 Classification performance on the
hold-out set

When tested on the hold-out set of 13 PD-UHC and 13 PD-
SHC, the proposed model achieved an accuracy of 76.92%. The
sensitivity, specificity and AUC of the results were 76.92%, 76.92%,
and 0.73%, respectively. The confusion matrix and ROC for the
hold-out set are presented in Figure 2.

3.4 Predictive variables for cognitive
impairment outcome

Shapley values of the top 10 regions are summarized in Table 3
and visualized on the AAL3 template (Figure 3). The complete table
is provided in the Supplementary material.

4 Discussion

In this study, we developed a predictive model using structural
T1w MRI and SVM to classify PD-UHC vs. PD-SHC with
high accuracy (AUC = 0.73), sensitivity (76.92%), and specificity
(76.92%) on the hold-out set. The identification of MCI status
in PD has become a necessary area of research, as it can give
insight into the mechanisms of cognitive decline in PD (Sun
et al., 2022). In previous studies, addressing cognitive decline
in PD, supervised machine-learning approaches coupled with
neuroimaging data have been used to discriminate between PD-
MCI and PD-HC (Cho, 2019; Zhang et al., 2020, 2021; Shin et al.,
2021). A notable difference in these investigations from the present
study is that they were carried out on PD patients exhibiting stable
cognitive functioning (PD-SHC) and those who had been already
identified with MCI at the baseline (PD-MCI). In contrast, we
used a supervised machine learning approach to distinguish PD-
HC patients from matched PD patients who progressed to MCI
years after the initial assessment, and to identify the structural brain
differences between the two groups.

To date, only a few studies have explored the potential of
machine learning techniques to predict cognitive outcomes in PD
before clinical symptoms arise, and these studies primarily utilize
clinical variables for this purpose (Smith et al., 2021; Harvey
et al., 2022). For instance, a predictive model trained on clinical
and biological parameters exhibited robust accuracy in predicting
cognitive impairment and maintaining normal cognition over an
8-year follow-up period, with an AUC of 0.86 (Harvey et al., 2022).
The relevance of clinical metrics, such as anxiety and olfactory
impairment, as well as biological markers like DNA methylation,
is also highlighted in this study, indicating their possibility of
being used as indicators for cognitive outcomes in PD (Harvey
et al., 2022). The efficacy of using cortical structure was also
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TABLE 2 Clinical and demographic features of PD patients included in this study, categorized by cognitive status.

Characteristics PD-SNC PD-UNC PD-SNC PD-UNC PD-SNC PD-UNC

Baseline At time of conversion Last record

N (male %) 52 (71.15%) 52 (71.15%) 52 (71.15%) 52 (71.15%) 52 (71.15%) 52 (71.15%)

Demographics Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age, years 61.98 (8.27) 64.33 (7.81) n.a. 67.56 (7.93) 66.98 (8.27) 69.33 (7.80)

Onset age, years 60.16 (8.24) 62.4 (7.91) n.a. n.a. n.a. n.a.

Education, years 15.58 (2.83) 15.06 (2.52) n.a. n.a. n.a. n.a.

Disease duration, months 5.88 (6.49) 6.18 (6.72) n.a. 44.94 (16.12) 65.88 (6.49) 66.17 (6.72)

Motor symptoms

UPDRS-III (total) 31.67 (11.59) 33.18 (13.31) n.a. 61.77 (18.62) 46.44 (12.03) 63.30 (21.95)***

UPDRS-III (total rigidity) 3.60 (2.46) 3.46 (2.60) n.a. 5.66 (3.12) 6.38 (3.30) 6.76 (3.72)

UPDRS-III (total tremor) 4.52 (2.84) 5.10 (3.84) n.a. 6.7 (5.3) 5.96 (4.42) 6.65 (5.17)

Cognitive symptoms

MoCA 26.94 (2.06) 26.56 (2.93) n.a. 24.51 (3.95) 27.30 (2.38) 24.15 (4.45)***

LNS 10.69 (2.64) 9.63 (2.72) n.a. 8.98 (3.17) 10.38 (2.59) 8.67 (2.99)**

BJLOT 12.82 (2.20) 12.30 (2.47) n.a. 11.32 (3.05) 12.53 (2.64) 11.09 (2.94)*

SDM 41.47 (9.13) 38.78 (8.86) n.a. 34.19 (11.22) 44.13 (11.64) 32.84 (12.54)***

SFT 48.25 (10.66) 45.88 (9.69) n.a. 44.38 (10.80) 50.00 (12.44) 43.26 (11.82)*

Epworth sleepiness scale 5.31 (3.03) 5.17 (3.52) n.a. 6.87 (4.22) 6.78 (4.14) 8.82 (5.38)*

Mood

Anxiety 63.54 (17.13) 68.25 (17.62) n.a. 70.0 (19.30) 59.94 (17.60) 71.88 (19.25)**

GDS 1.88 (1.85) 2.52 (2.40) n.a. 3.36 (2.72) 1.98 (2.40) 3.75 (2.74)**

BJLOT, Benton Judgment of Line Orientation Score; GDS, Geriatric Depression Scale; HC, healthy control; LNS, Letter Number Sequencing; MoCA, Montreal Cognitive Assessment; PD,
Parkinson’s disease; SDM, Symbol Digit Modalities Test; SFT, Semantic Fluency Total Score; UPDRS, Unified Parkinson Disease Rating Scale; N, number of subjects; n.a., not available. The
significance levels were presented as outcomes of a Chi-square test for categorical variables and a t-test for continuous variables comparing the PD-UNC and PD-SNC groups, following FDR
correction for multiple comparisons (*P < 0.05, **P < 0.001, ***P < 0.0001).

FIGURE 1

(A) Normalized confusion matrix and (B) receiver operating characteristic plot for predicting cognitive impairment within the training set using
10-fold cross-validation.

assessed in predicting cognitive performance in PD patients, at
least 3 years before the onset of MCI symptoms, yielding an
AUC of 0.72 (Smith et al., 2021). In this pre-print (not peer-
reviewed) study, the predictive model was further enhanced by
incorporating clinical variables and structural imaging data, leading
to an improved AUC of 0.85 (Smith et al., 2021). Interestingly,
they could achieve AUC of 0.81 only with clinical variables

without neuroimaging data suggesting their smaller contribution
to the decision-making process of the prediction model (Smith
et al., 2021). To prevent that our model is dictated by baseline
clinical characteristics (e.g., lower MoCA scores), we selected a
subset of PD-SHC patients that were matched with PD-UHC
patients in terms of age, gender, and clinical characteristics
(Table 2).
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FIGURE 2

Representation of the (A) normalized confusion matrix and (B) the receiver operating characteristic plot for the prediction of cognitive impairment in
the hold-out set.

TABLE 3 The list of the top 10 brain regions determined by Shapley for
MCI prediction in PD.

Abbreviation
in AAL3 atlas

Brain region Shapley
value

lSFG Left superior frontal
gyrus-dorsolateral

0.0289

lRedN Left red nucleus 0.0281

lSNpr Left substantia nigra-pars
reticulata

0.0251

lPFCventmed Left superior frontal
gyrus-medial orbital

0.0250

rVTA Right ventral tegmental area 0.0249

RapheD Raphe nucleus-dorsal 0.0241

rLING Right lingual gyrus 0.0240

RapheM Raphe nucleus-median 0.0239

lCER9 Left lobule IX of cerebellar
hemisphere

0.0237

rCER9 Right lobule IX of cerebellar
hemisphere

0.0235

FIGURE 3

Visualizing the top 10 brain regions involving in SVM machine
learning prediction of cognitive impairment using structural MRI
data. The color bar stands for Shapley values.

Using SHAP analysis, we ranked the contribution of brain
regions (in terms of GM volume) on our prediction model. Top-
contributing brain regions located in the frontal, occipital, and
cerebellar regions as well as the midbrain (Table 3). Particularly,
the left superior frontal gyrus-dorsolateral was shown as the top

brain region, which is directly associated with cognitive executive
functions such as working memory and decision-making (Li et al.,
2013). The abnormality of the dorsolateral prefrontal cortex has
well been documented in PD-MCI (Nagano-Saito et al., 2014;
Mihaescu et al., 2019), and the electrical stimulation therapies on
this region resulted in significant improvement in PD cognition
(Randver, 2018; Beheshti and Ko, 2021).

Interestingly, several regions in the midbrain area (e.g., the
right ventral tegmental area and the raphe nucleus-dorsal) were
detected as highly important regions in our prediction model.
The primary pathological feature of PD is the deterioration of
neurons in the substantia nigra, leading to the gradual death
of these cells, with up to 70% loss over time (Caminero and
Cascella, 2019). While the midbrain region is commonly known
with movement and coordination, it plays a pivotal role in
transmitting essential information for vision and hearing processes
(Caminero and Cascella, 2019). It also serves as a key area
for functions related to reward cognition (e.g., motivational
salience and associative learning), consciousness, and sleep
(Caminero and Cascella, 2019). Additionally, there may be a
connection between hyperechogenicity of the substantia nigra
and a slight decrease in performance on the word list delayed
recall test (Yilmaz et al., 2016), which aligns with previous
findings of memory issues in early PD (Aarsland et al., 2009;
Broeders et al., 2013).

Our machine-learning analysis also suggests that the
cerebellum is one of the key brain regions associated with
early cognitive deterioration in PD (Table 3). Historically,
the cerebellum has been viewed as playing a role in the
management of voluntary movement, motor learning, and
balance (Wu and Hallett, 2013). In the context of PD, even though
cerebellar abnormalities have conventionally been associated
with tremors (Zhong et al., 2022) and gait disturbances (Wu
and Hallett, 2013), recent studies have found connections
between the cerebellum and cognitive decline (Wu and Hallett,
2013). Identifying Lobule IX of the cerebellum as a top brain
region associated with cognitive decline is also consistent
with other studies that have documented associations between
Lobule IX of the cerebellum and the behavioral components of
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cognition and emotions in PD (Azizi, 2021). We also performed
an independent t-test comparing GM volumetric features
between two groups. This analysis indicated a significant
group difference in only one region: the Right Lobule III of
the cerebellar hemisphere [t(102) = 3.38, P = 0.041, FDR
corrected]. This finding suggests that the classifier we developed
is not solely influenced by a single regional variation. Instead,
it underscores the importance of the overall pattern of GM
atrophy across a wide network of brain regions in predicting
MCI in PD.

Cross-sectional studies have reported a prevalence of around
25.8% of MCI at the time of PD diagnosis (Aarsland et al., 2010).
Longitudinal studies have previously shown 20%–25% prevalence
of MCI when first diagnosed with PD which increased to 40%–
50% after 5 years of monitoring (Domellöf et al., 2015; Lawson
et al., 2017; Pedersen et al., 2017). The dementia prevalence
also increases as disease duration increases: 17% after 5 years
of diagnosis (Williams-Gray et al., 2009), 46% after 10 years
(Williams-Gray et al., 2013), and 83% after 20 years (Hely et al.,
2008). On the contrary, the PPMI cohort that we have downloaded
(who met our inclusion criteria) shows much less incidence of
MCI conversion over 5 years (21.3%). This discrepancy may stem
from the use of different diagnostic criteria, positive shift toward
PD awareness (earlier identification), and/or differences in study
volunteer recruitment strategies. For example, the PPMI patients
that we have included were much younger (63 ± 8 years old) than
previous studies (71 ± 7 years old), and older age at diagnosis is a
known risk factor for cognitive decline in PD (Domellöf et al., 2015;
Anang et al., 2017; Pedersen et al., 2017).

The biggest limitation of the current study is the small sample
size, which was constrained by the number of PD-UHC. Our
findings need to be validated by additional studies with larger
sample sizes, particularly in relation to the most important brain
regions linked to the early stages of cognitive decline in PD.
Furthermore, the tracking interval for our samples was limited to
5 years, preventing us from following the cognitive status of our
PD-SHC patients over a longer period, such as 8 years (Aarsland
et al., 2003).

Another significant constraint is the absence of longitudinally
acquired MRI scans. Anticipated completion of data collection
in the near future for the PPMI is expected to address this
limitation by providing a larger and longitudinal dataset. This
expanded dataset may encompass a substantial number of patients
transitioning from cognitively healthy states to MCI or dementia,
using diverse brain imaging modalities such as resting state
functional MRI and Diffusion tensor imaging. The prospective
nature of this data will enable us to develop a more comprehensive
model for predicting cognitive decline in PD.

5 Conclusion

In this study, we used a SVM along with baseline structural
MRI data to construct a model that accurately predicted cognitive
impairment and preserved normal cognition in diagnosed PD cases
from the PPMI over a 5-year follow-up period. This prediction was
driven by baseline MRI features from two PD groups (e.g., PD-
SHC and PD-UHC) that were similar in terms of their baseline

clinical and demographic characteristics. Our analysis highlighted
a discernible pattern of GM alterations between these two groups,
predominantly localized in the frontal, midbrain, occipital, and
cerebellum regions.
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