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Abstract: A number of sentinel species are regularly sampled from the environment near the Oil
Sands Region (OSR) in Alberta, Canada. In particular, trout-perch are sampled as a proxy for the
health of the aquatic ecosystem. As the development of the OSR began before the environmental
monitoring program was in place, there is currently no established measure for the baseline health of
the local ecosystem. A common solution is to calculate normal ranges for fish endpoints. Observations
found to be outside the normal range are then flagged, alerting researchers to the potential presence of
stressors in the local environment. The quality of the normal ranges is dependent on the accuracy of
the estimates used to calculate them. This paper explores the use of neural networks and regularized
regression for improving the prediction accuracy of fish endpoints. We also consider the trade-off
between the prediction accuracy and interpretability of each model. We find that neural networks
can provide increased prediction accuracy, but this improvement in accuracy may not be worth the
loss in interpretability in some ecological studies. The elastic net offers both good prediction accuracy
and interpretability, making it a safe choice for many ecological applications. A hybridized method
combining both the neural network and elastic net offers high prediction accuracy as well as some
interpretability, and therefore it is the recommended method for this application.

Keywords: environmental monitoring; Athabasca oil sands; sentinel species; neural networks;
variable selection; regularized regression

1. Introduction

The primary objective of many environmental monitoring programs is to evaluate the
potential impact of anthropogenic activities on the local ecosystem. Ideally, local environ-
mental indicators are characterized prior to development and used to define the natural
state of the ecosystem. Using this method, researchers are able to isolate trends in the
environment’s condition, identify potential stressors, and predict the future condition of
the ecosystem. These predictions are useful as an early-warning system for potential envi-
ronmental degradation and allow issues to be addressed proactively. However, monitoring
programs are rarely put in place prior to the industrial development of an area. In this
more common scenario, the lack of pre-exposure data reduces the sensitivity of monitoring
programs, but the desire and need to better understand how anthropogenic stressors affect
the environment persists. An example of an environmental monitoring program such as
this is the Joint Canada–Alberta Oils Sands Monitoring Program (JOSM) in the Oil Sands
Region (OSR) in Northern Alberta, Canada.

The OSR is a major source of income for both the province and the country. To ensure
that the region is developed in an environmentally conscious way, the provincial and federal
governments work together under JOSM to create a framework of research with which to
monitor the cumulative effects of the continual development of this region. Understanding
how the industrialization of the oil sands affects the local environment is complex, as many
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of the effects are indirect or are confounded by natural stressors. A method employed by
JOSM to detect changes in the local environment involves the use of sentinel species. To
obtain a comprehensive depiction of ecosystem health, populations of fish, birds, mammals,
and plants are monitored annually by researchers to serve as proxy variables for the health
of their respective environments [1]. Due to the proximity of industrial activities to the
Athabasca River, several resident sentinel species are monitored to assess the health of the
aquatic ecosystem. Trout-perch (Percopsis omiscomaycus) are one of the fish species collected
from locations across the river. In theory, should the health of the aquatic ecosystem decline,
then so should the health of resident trout-perch populations. By collecting samples of
trout-perch annually, researchers are able to sense and monitor the health of the ecosystem
over time through modeling the health of the fish populations.

Many techniques have been developed and used to address the problem of missing
baseline data [2–4]. In one approach, an expected or normal range is derived from any
existing data and used to iteratively define the range of expected future observations [5,6].
Similar to industrial control charts, these environmental normal ranges can, however, also
use covariates to account for background variation and enhance the sensitivity of the tool
to the stressor of interest, to identifying the emergence of novel sources of variation, or to
changes in the relationships between indicators and natural factors [7–9].

Further improvements to the normal range approach can also be made using machine
learning techniques. For example, water quality variables have been included in previous
analyses of fish health metrics of trout-perch collected in the Athabasca River near Oil
Sands industrial facilities using regularized regression methods [10]. As the primary
objective of the normal range approach is to predict a range representative of normal
variations within future populations, the accuracy of the model used to make this estimate
is highly important. However, for many monitoring programs, understanding what is
driving environmental degradation is one of the main priorities. Thus, an ideal modeling
technique for this purpose would be both accurate and interpretable, but highly accurate
modeling techniques are often difficult to interpret. One such technique involves neural
networks (NNs), which have been shown to improve prediction accuracy over linear
methods in many applications [11–13], but are difficult to interpret due in part to the
magnitude and complexity of the internal representations which govern the modeling
process [14]. To quantify the interpretability–performance trade-off of using NNs in this
application, we compared their performance to that of an Elastic Net (EN) model, which is
highly interpretable and has seen success in similar applications [10]. We also consider a
hybridized method in which the EN is used for variable selection and the selected subset of
variables is then used as the input for a NN. The rationale for the two-step approach is that
it will offer better interpretability than the standard NN and may also improve prediction
accuracy over the EN.

The Interpretability–Performance Trade-Off

There is often a trade-off between interpretability and predictive performance as
interpretable models, such as linear regression models, are not able to effectively capture
highly complex nonlinear relationships among variables. Regularized regression techniques
such as the EN can efficiently find an optimal, or near optimal, subset of variables from
a given set which are responsible for the variation of a given response via a penalized
linear regression model [15]. These techniques are popular as they help to identify the most
influential variables in a given regression model that best predict the response variable
which, in environmental monitoring studies, is crucial for preventing future environmental
degradation. It is common for environmental monitoring studies which seek to inform
policy decisions to utilize less complex and more interpretable analysis techniques. For
instance, Mannix et al. (2010) [16] employed decision trees for assessing the potential
impacts of industrial water extraction limits on crude oil production to better inform
water restriction policy in the OSR. Additionally, Kelly et al. (2010) [17] employed linear
regression models to identify contaminants which were in higher concentrations near
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industrial operations than previously believed and concluded that the existing monitoring
program should be expanded. However, in other cases such as potential acidification
from industrial emissions, it is difficult to conduct a defensible analysis attempting to link
environmental degradation to anthropogenic activities due to the complexity of the system
being analyzed [18]. In these more complex, real-world scenarios in which capturing all
relevant sources of variation are either difficult or impossible highlight gaps in commonly
applied methodology, such as linear regression and its variants for monitoring studies done
to inform policy decisions. In these scenarios, more complex methodologies are required,
but the requirement of model interpretability remains. As such, we seek to explore the
interpretability–performance trade-off of more complex modeling techniques such as NNs
when applied to complex environmental effects monitoring studies.

It is well known that NNs are capable of achieving excellent predictive accuracy for
many problems, as they have been shown to be universal approximators which are capable
of modeling nonlinear and dynamic systems [19]. The drawback of NNs is their highly com-
plex nature. This lack of interpretability presents an obstacle for their implementation into
environmental monitoring programs, as discussed prior. However, the loss of interpretabil-
ity may be outweighed by the potential gains in prediction accuracy for certain applications.
By comparing the accuracy of the EN model against the standard and hybrid NN methods,
we look to identify a modeling technique with an optimal interpretability–performance
trade-off for the prediction of sentinel fish population health.

2. Materials and Methods
2.1. Trout-Perch Data

The monitoring program in its current form began in 2009 and samples were collected
in 2009–2011 and 2013–2018. The samples were taken from several sites along the Athabasca
River in late September to early October of each year. A total of 40 fish—20 males and
20 females—were collected from each sampling location for each year. Only sexually
mature fish were collected in this sampling. One observed animal that we classified as
being sexually immature was removed from the dataset, leading to an imbalance in the site
sample for one of the years. Captured fish were measured to determine their fork length
(±1 mm), total body weight (±0.1 g), gonad weight (±0.001 g), liver weight (±0.001 g),
and age (±1 year).

2.2. Water Quality Data

Water quality samples were collected at six locations along the Athabasca River
between 2011 and 2018 by separate teams from the trout-perch sampling in a concurrent
study. These samples were then analyzed to determine the composition of the water. As
rivers are not chemically homogeneous, 10 samples were targeted from each location. The
width of the river was partitioned into 10 sections of equal length from the west bank to
the east bank. Each section was then sampled individually. These samples were collected
using vertical integrated sampling. This technique entails lowering a sampling bottle to
the bottom of the river then retracting it up to the surface to collect samples of water from
various depths. For our analysis, the 10 observations were averaged to account for the
heterogeneous nature of river chemistry.

After collection, the water quality samples were measured for a variety of metrics:
nutrients, major ions, metals, polycyclic aromatic hydrocarbons (PAHs), and mercury (Hg).
Of these measures, the PAH and Hg datasets had high levels of missing data and were
therefore discarded for this analysis. The nutrients dataset is composed of variables such as
dissolved nitrogen, phosphorous, and carbon. The major ions dataset consisted of variables
such as potassium, sodium, alkalinity, and hardness, among others. Finally, the metals
dataset contains measures of all elemental metals. Of these three datasets, only variables
with complete cases were used in the analysis. The remaining variables were all converted
to mg/L where appropriate, and were log10 transformed. Both the trout-perch and water
quality datasets are publicly available from the Government of Canada’s website [20].
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2.3. Amalgamated Data

The collection of the trout-perch and the water quality samples were undertaken by
separate research teams. As such, the sites and years sampled did not align perfectly
between the two sets of data. Trout-perch sampling was conducted at the same sites every
year, but the water quality sampling was only conducted at some sites for certain years.
Additionally, the water quality variables were not always sampled from the same locations
as the trout-perch. To inference the water quality at these fish collection sites with no
direct water quality measures, we use a weighted average based on distance from each of
the nearest upstream and downstream water sampling sites. Our final dataset contains
observations of 799 trout-perch from four unique locations across 5 years.

2.4. Scaling Endpoints

Trout-perch are indeterminate growers, and so their growth does not terminate at a
certain point. However, their rate of growth is much slower after reaching sexual maturity
than it is during adolescence. This relationship between size and age creates many issues
when it comes to analyzing and modeling fish populations. Several different standard-
ization techniques have been proposed to account for this. In EEM studies, indices are a
common standardization technique. There are three common indices for fish: the condition
factor (K), gonadosomatic index (GSI), and the liver somatic index (LSI). These are simply
ratios between the body weight and length, gonad weight and body weight, and the liver
weight and body weight, respectively [21]. The statistical issues associated with using
indices to adjust for allometric growth have been discussed in previous studies; see [22]. As
such, we will avoid using indices as adjusted endpoints. Instead, we will use the common
within-group regression slope adjustment as presented by [23]. A description of how this
technique can be used to adjust endpoints can be found in [21].

Three trout-perch population metrics were used as response variables: adjusted body
weight, adjusted gonad weight, and adjusted liver weight. These measures were standard-
ized to allow for a more direct comparison. The body weights of fish were standardized to
a common length of 7.5 cm and the gonad and liver wights were both standardized to a
common body weight of 4.6 g. Models fit using the water quality dataset were then used to
predict the expected condition of the fish population at each location.

2.5. Data Partitioning

To assess the model prediction accuracy, the data were partitioned into training
and testing sets using two methods. First, to assess how these models would perform
in applications for predicting future fish endpoints, we partitioned the dataset using a
temporal split in which data obtained prior to the last year in the dataset, 2018, were used
to train the model, and data from 2018 were reserved for testing. For tuning parameter
selection when training the NN model, 20% of observations from the training set were
reserved as a validation set. For the EN, 10-fold cross-validation was used to determine
the tuning parameters within the training set. Once models were trained, their predictive
performances were evaluated on the testing set.

We also considered a random split scenario. As having observations of fish from
the same location in both the training and testing sets would introduce data leakage, we
classified each location–year (4 × 5 = 20) combination as an environment and randomly
selected environments to create the training and testing sets. The training set was formed by
randomly selecting 70% (14) of the environments, leaving the remaining 30% (6) for testing.
As all but one environment had 40 observations, the average number of observations in
the training and testing sets was 560 and 240, respectively. The rest of the computational
workflow followed that of the temporally split data. There are two primary reasons for
randomly splitting the data: (1) Machine learning models commonly assume that the
training and testing sets are derived from a homogeneous population; (2) as the water
quality variables are only measured once per year, they can effectively be treated as a set
of categorical variables with several levels. Splitting the data randomly allows us to test
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the performance of the network under more combinations of levels of the water quality
variables than we would using a temporal split. This allows for the model to be evaluated
for a wider variety of testing scenarios and gives greater insight into how well the models
generalize relative to the temporal split.

2.6. Analysis Techniques

For this analysis, we chose the EN as the baseline model, as previous research has
shown the EN to be an effective modeling technique for EEM data [10]. The EN model
performs variable selection via coefficient regularization. By penalizing the size of regres-
sion coefficients during model fitting, the EN will drop variables from the model that are
deemed to be relatively unimportant. The variables retained in the final model can be
interpreted as being the most influential for the response. For an in-depth review of the
EN, readers are directed to the original work by [15]. A potential shortcoming of the EN in
this application is that the system being modeled may not necessarily be linear. As the EN
is a linear model, it may not be able to capture the potential nonlinear relationship between
the fish endpoints and water quality variables. We propose using NNs to overcome this
potential issue. The analysis was conducted using R version 4.2.3 [24]. EN regularization
was implemented via the glmnet library [25], and the neural networks were developed
using Keras and tensorflow libraries [26,27].

Neural Networks

The influence of stream water chemistry on the health of resident populations is likely
governed by complex, linear and nonlinear relationships. Neural networks are capable
of modeling nonlinear systems, as they have been shown to be universal approximators
provided there is a sufficient number of hidden units [19]. This result suggests that NNs
have the potential to more accurately model the suspected nonlinear relationship between
water quality variables and fish endpoints. While the EN can estimate the effect of each
variable on the response, as well as selecting important variables, the NN cannot quantify
the relative effect of each variable, and therefore is more difficult to interpret. As such,
for this analysis, we fit two NN models for each response variable: a standard NN model
without pre-variable selection and a hybrid NN model with a pre-variable selection using
EN. We then compare the predictive performance of the trained NN models against the
baseline EN model to assess whether the NNs provide any increase in prediction accuracy.

Neural networks are models composed of interconnected nodes structured in layers.
They contain an input layer, one or more hidden layers, and an output layer. Each node of
the input layer corresponds to an explanatory variable, and each of the nodes within the
hidden layers and the output layer is simply a linear combination of the previous layer’s
nodes followed by a transformation function. The kth activation node in the hidden layer is
given by

ak = g1

(
w(1)

0k +
p

∑
j=1

w(1)
jk xj

)

where g(·) is an activation function, w0k is the bias term for the kth activation node, wjk

is the weight on the jth input variable for the kth activation node, and xj is the jth input
variable. These activation nodes provide the new inputs for the next layer. In the case of
the single-layer network, the final prediction, ỹ is given by

ỹ = g2

(
w(2)

0 +
K

∑
k=1

w(2)
k ak

)
.

For networks with more than one hidden layer, the activation nodes are treated as the
inputs for the next hidden layer. This method of modeling is what allows NNs to capture
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complex nonlinear relationships among variables. By varying the number of nodes and
hidden layers, NNs are able to accurately model highly complex relationships for a variety
of applications.

The flexibility of NNs, which allows them to model complex relationships, also makes
them prone to overfitting. Overfitting occurs when a network begins to learn the error
variance in the training set rather than the generalized trends. This results in the model
fitting the training data exceptionally well, but having poor predictive performance for new
data. Models with a large number of explanatory variables are more prone to overfitting,
as they require more training observations to determine the relative importance of each
explanatory variable for predicting the response. If the training set is not sufficiently large,
the network will likely be unable to determine which variables are important. In this
case, the effects of some unimportant variables may be considered in the prediction of the
response, which will reduce the prediction accuracy of the trained model [28]. To address
overfitting, we employed EN regularization to the cost function, which quantifies how
accurate the model is, to prevent any one node from having a disproportional influence on
the final prediction.

Another factor found to have a significant impact on the generalization of our models
was learning rate annealing. Rather than treating the learning rate as a static hyperparame-
ter and identifying a single optimal value, we implemented a function that reduced the
learning rate by a factor of 10 when the validation error rate plateaued during learning.
Training a network using learning rate annealing has been shown to often outperform net-
works fit with a static learning rate for problems with both convex [29] and non-convex [30]
cost function solution spaces and helps to prevent training a locally optimized model rather
than a globally optimized model.

In addition, we implement early stopping, which truncates a network’s learning if
there is no appreciable decrease in loss over a set number of epochs. Early stopping is
a popular method to prevent overfitting in gradient descent learning, but determining
when to truncate learning is nontrivial. While the underlying theory of rule-based decision
making for automatically determining when to stop learning in the gradient descent
algorithm has been explored [31], we chose to consider the early stopping value as a
hyperparameter to be optimized when training the NN model.

Among many available activation functions, we found that the exponential linear unit
(ELU) produced the best results in terms of reducing the computational cost of training the
NNs and producing a more accurate predictive model.

2.7. Hyperparameter Optimization

One of the most important aspects associated with achieving high network prediction
accuracy is hyperparameter optimization. The hyperparameters we chose to optimize were
the number of hidden layers, the number of nodes in each hidden layer, the strength of
the regularization penalty, the number of epochs, the early stopping patience, the batch
size, and the model optimizer function. Grid search is a technique that is commonly
used for hyperparameter optimization; however, it is notoriously computationally expen-
sive, especially for complex models. Techniques such as random search cut down on the
computational cost of hyperparameter optimization by not considering every possible
combination of hyperparameters, but a random search is prone to missing optimal configu-
rations [32]. Hybrid techniques that involve using a random search to quickly identify a set
of good parameters and a grid search to then find the optimal parameter combinations of
this reduced set are popular, as they are less computationally expensive than a naive grid
search, but typically more accurate than a random search. However, these hybrid methods
require manual interaction. As multiple networks required hyperparameter optimization,
we chose to implement Bayesian hyperparameter optimization, as it is both automatic and
computationally efficient. Automatic optimization algorithms have been shown to typically
outperform manual approaches [33].
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Bayesian hyperparameter optimization models the generalization performance of a
network as a sample from a Gaussian process. By treating the results of previous networks’
performances as samples of a Gaussian process, the algorithm is able to efficiently determine
which hyperparameters require tuning and which values to test next using an acquisition
function [34,35]. Efficiently finding an optimal set of hyperparameters requires a trade-
off between testing new combinations of parameter values (exploration) and refining
previously tested successful sets of parameters (exploitation). The various acquisition
functions place different values on exploration and exploitation [35]. The probability of
improvement (PI), one of the most commonly used acquisition functions [36], was the
acquisition function used in this study. Maximization of the PI is performed by simply
selecting the hyperparameters that are most likely to improve the loss function via some
user-selected value, ξ [35].

We implemented Bayesian hyperparameter optimization using the rBayesianOptimiza-
tion package available in R [37]. We ran 100 iterations of the algorithm for both the
standard NN and the hybrid NN for each of the three response variables to identify optimal
parameters for a total of six unique sets of hyperparameters. Resulting model architectures
are presented in Tables S1 and S2 (Supplementary Materials).

2.8. Model Assessments

Mean square prediction error (MSPE) and MSE are two common metrics used to quan-
tify model performance for continuous responses and were used to assess the predictive
performance of the trained EN and NN models for this analysis. In the training of NNs, the
node weight parameters (ws) require an initial value prior to training. These initial values
are typically randomly selected and as such, the performance of the resulting NN model
may vary based on how close these random values are to the optimal values. Finding the
weights which result in the global minimum MSPE is not feasible, as there is an infinite
number of possible initializations. A common approach to accounting for the variability of
model performance induced by the random initialized weights is to ensemble the network.
Ensembling a network involves fitting the same NN numerous times and combining the
predictions from these NNs into a single prediction. This helps to reduce the variability
of the prediction accuracy and can improve the model generalizability [38]. We chose to
ensemble 100 randomly selected initializations for both NNs models considered in the
analysis. For each initialization, there will be a pair of corresponding MSPE and MSE values
for the trained model. Given that both MSPE and MSE have a lower bound of zero and the
distributions of the MSPEs and MSEs were often not symmetric, the median of the MSPE
and MSEs were used to assess the predictive performance of the ensemble NN models.

3. Results
3.1. Temporal Split Results

A summary of the performance of each model under the temporal split scenario is
presented in Table 1. We find that for the adjusted body weight response, the standard
NN had the smallest MSPE and MSE. The hybrid NN also achieved a comparably small
MSPE. For the adjusted gonad weight response, the standard NN model was again found
to have the smallest MSPE, followed by the hybrid NN and then the EN. Finally, for the
adjusted liver weight response, the EN had the smallest MSPE, which was followed by
the standard NN then hybrid NN. The three models performed similarly across the three
response variables, with the exception of the adjusted gonad weight response, for which
the EN model had an MSPE that was an order of magnitude larger than the standard
NN and the hybrid NN. Of the two NN models, they had nearly identical MSPEs for the
adjusted body weight response. The standard NN outperformed the hybrid NN for the
adjusted gonad weight, but was outperformed by the hybrid NN for the adjusted liver
weight response. As such, there does not appear to be any consistent advantage in terms of
accuracy with regard to using one network over the other in this scenario.
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Table 1. Median values performance measures of each model by response for the temporal split scenario.

Response Technique MSPE MSE

Adjusted
Body Weight

EN 2.83 × 10−3 1.09 × 10−3

NN 2.34 × 10−3 6.41 × 10−4

Hybrid 2.36 × 10−3 7.00 × 10−4

Adjusted
Gonad Weight

EN 1.02 × 10−1 5.05 × 10−2

NN 6.96 × 10−2 3.30 × 10−2

Hybrid 7.28 × 10−2 2.13 × 10−2

Adjusted
Liver Weight

EN 2.29 × 10−2 2.28 × 10−2

NN 4.83 × 10−2 1.41 × 10−2

Hybrid 3.10 × 10−2 1.41 × 10−2

Bold values represent the best results for each metric and response.

To investigate the influence of the randomized initial weights of the NNs on model
performance, we plotted the MSPE from each of the 100 weight initializations for both the
standard and the hybrid NN and overlaid the mean and median values for each response
variable. In Figure 1, we see the performance of the standard and hybrid NNs over the
100 random weight initializations for the adjusted body weight response. We find that
the mean and median for each networks are similar, suggesting that the performances
of the networks are distributed approximately uniformly. Comparing the range of the
MSPE of the two networks, we find that the standard NN has a noticeably larger variance,
suggesting that the hybrid NN is more stable in this scenario.

Figure 1. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted body weight response under the temporal split scenario.

From Figure 2, we see that for both the standard and hybrid networks, the mean is
larger than the median, suggesting a positive skew in the performance of the networks for
this response. This skew is also evidenced by the apparent outliers in the model’s MSPE.
The hybrid NN appears to be more susceptible to extreme deviations in performance,
whereas the standard NN has more frequent, but less severe deviations in performance for
this response.
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Figure 2. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted gonad weight response under the temporal split scenario.

Finally, from Figure 3, we see that for the standard NN, the mean is smaller than the
median, suggesting a negative skew in the performance of this network for this response.
This skew is also noticeable in terms of the inconsistent performance across the different
weight initializations, which suggests that the random initialized weights can greatly
influence the performance of the model. For the hybrid NN, we find that the mean is larger
than the median, indicating a positive skew to the performance of this model. As is the
case for the performance of the hybrid NN for the adjusted gonad weight response, we
find that there are consistent outliers in model performance. The performance of the hybrid
NN appears to be more susceptible to changes in the weight initialization. Despite this, the
hybrid NN outperforms the standard NN by a considerable amount for the liver weight
response, suggesting that variable selection prior to fitting a NN may reduce the model’s
stability, but improve the average performance when ensembling under certain conditions.

Figure 3. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted liver weight response under the temporal split scenario.
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3.2. Random Split Results

As is the case for the temporal split scenario, we fit each NN 100 times on the training
set to assess the influence of the randomized weights on model performance on the test
set. In this scenario, the training and testing sets were split randomly for each weight
initialization. Each year–location combination was considered to be a unique environment
and for each train–test split, 70% of environments were randomly selected to be used as
the training set and the remaining 30% of environments were reserved as the test set. The
random split scenario allowed us to assess model performance across a variety of spatial
and temporal combinations, which provided better insight into the generalizability of these
models. The EN model was also fit for each of the 100 train–test splits for comparison.

The median MSPE and MSE are presented for the three models across all response
variables in Table 2. For the adjusted body-weight response, we see that the hybrid NN
has the smallest median MSPE and the EN has the largest. For the adjusted gonad weight
response, we find that the EN achieves the lowest median MSPE and the hybrid NN
achieves the largest. Finally, for the adjusted liver weight, we see that again, the hybrid
NN has the smallest median MSPE and the EN has the largest. Interestingly, the standard
NN performed relatively conservatively, being neither worst nor best for any of the three
response variables. These results suggest that variable selection prior to fitting the NN
model can improve accuracy of the network across a more diverse set of testing scenarios
relative to the temporal split scenario.

Table 2. Median values performance measures of each model by response for the random split scenario.

Response Technique MSPE MSE

Adjusted
Body Weight

EN 1.95 × 10−3 1.43 × 10−3

NN 1.65 × 10−3 7.52 × 10−4

Hybrid 1.58 × 10−3 7.79 × 10−4

Adjusted
Gonad Weight

EN 7.13 × 10−2 5.24 × 10−2

NN 7.62 × 10−2 2.90 × 10−2

Hybrid 7.94 × 10−2 2.55 × 10−2

Adjusted
Liver Weight

EN 2.67 × 10−2 2.21 × 10−2

NN 2.53 × 10−2 1.35 × 10−2

Hybrid 2.33 × 10−2 1.36 × 10−2

Bold values represent the best results for each metric and response.

Comparing the performance of the two NN models across all 100 train–test split
scenarios, from Figure 4, we see the performance of the standard and hybrid NNs have
relatively little variation in performance, aside from a single outlier in the standard NN
model’s performance. We see that the mean and median of the hybrid NN are the same,
suggesting that the model’s performance is uniformly distributed. The presence of the
outlier in the standard NN may suggest that variable selection prior to model fit can help
guard against large variations in model performance as a result of the randomized weight
initialization process under certain scenarios.
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Figure 4. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted body weight response under the random split scenario.

For the adjusted gonad weight response, from Figure 5 we can see that the mean of
both networks is larger than the median, suggesting that the model performance has a
positive skew. There does not appear to be any noticeable difference in the variability of
the model performance between the two networks in this scenario.

Figure 5. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted gonad weight response under the random split scenario.

Finally, from Figure 6, we find that for the adjusted liver weight response, the mean
performance of both networks is again larger than the median performance, suggesting
a positive skew. Additionally, the hybrid NN has larger outliers than the standard NN,
but still achieves a smaller MSPE on average. This may suggest that the hybrid network
is more prone to larger outliers, but is on average more accurate across a wider array of
testing scenarios.
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Figure 6. Ensemble performance of the standard and hybrid neural networks over 100 iterations for
the adjusted liver weight response under the random split scenario.

4. Discussion

The purpose of this analysis was to determine if nonlinear techniques such as NNs
could produce more accurate predictions of several trout-perch health metrics relative
to simpler, but more interpretable techniques such as the EN. Our results find that for
the temporal split scenario, the EN outperforms the NNs in predicting the adjusted liver
weight responses, but is outperformed by the NNs for the adjusted body and gonad weights.
However, as the temporal split only considered a single year in the testing set, the results
of this analysis may not be indicative of their generalized predictive ability.

From the random split analysis, we can gain a better idea of how well each of the
models generalize to different training and testing scenarios. From this analysis, we found
that the EN outperformed the NN models for the adjusted gonad weight response, but
was outperformed by the NNs for the adjusted body and liver weight responses. The
results from the temporal and random split scenarios may suggest that linear models can
be sufficient for modeling the relationship between the development and health of the
gonads and livers of trout-perch and the quality of the environment in which they reside.
However, linear models appear to be less capable of accurately capturing the relationship
between water quality variables and the overall body weight of the fish relative to nonlinear
modeling techniques.

The adjusted body weight was best predicted by the NNs for both the temporal and
random split scenarios, with the hybrid having the smallest MSPE for the random split
scenario and the standard NN obtaining a slightly smaller MSPE than the hybrid NN
for the temporal split scenario. It is well known that the effects of some water quality
variables are dependent on their interaction with other variables in the environment [39,40].
Because of these interactions, we suspected this relationship was highly nonlinear and
thus, implementing techniques such as NNs would result in improved prediction accuracy.
Previous research has determined that while the EN did improve the model performance
over the existing modeling techniques for the adjusted body weight of trout-perch, it
did so to a much smaller extent than the performance increases seen for the adjusted
gonad weight and adjusted liver weight responses [10]. This could suggest that the water
quality variables influencing the overall body weight of trout-perch may interact with other
variables, resulting in a complex, nonlinear system that linear models cannot accurately
capture. This may explain the performance difference between the EN and NN models for
the body weight response.
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Between the two NN techniques considered, the hybrid method of using EN to select
the explanatory variables to be used in the NN outperformed the NN fit using all available
explanatory variables in two out of the four cases in which the NNs outperformed the EN. In
one of two cases in which the standard NN outperformed the hybrid NN, the performance
difference between the two models was very small. Furthermore, the variability of the
hybrid NN’s performance relative to the standard NN’s was smaller in two of the six tests,
equivalent in one, and larger in three. This indicates that variable selection may negatively
impact the stability of the NN’s performance for individual weight initializations. However,
when ensembling the network’s estimates, the median performance is on average more
accurate than the standard NN. This result suggests that conducting feature selection prior
to fitting the NNs may help to reduce overfitting and improve prediction accuracy when
working with small datasets such as this.

Environmental effects monitoring programs are often multifaceted with respect to
their objectives. The methods employed to achieve these objectives are similarly diverse.
Methods such as NNs may be most appropriate for certain objectives when specific knowl-
edge of systems drivers is not needed. However, outside of these scenarios, more suitable
methods often exist. Techniques such as NNs have been applied to many complex prob-
lems with the goal of informing management decisions. However, many of these studies
are either not interested in a mechanistic explanation of the system considered, or the
system is already well defined. For instance, Bhullar et al. (2023) [41] investigated the use
of deep-NNs for assessing how land suitability will change due to the effects of climate
change. In this scenario, the system being analyzed, and the relationship between the
environment and land suitability, is well understood, and so model accuracy is prioritized
over interpretability [41]. In the context of problems in which high prediction accuracy is a
priority but the underlying mechanism of the system is not well understood, hybridized
analysis techniques such as those presented in this paper can bridge interpretable process-
based models and less interpretable, but highly accurate machine learning models. While
various causal inference techniques using machine learning are being developed for use in
monitoring programs, the adoption of these techniques has been gradual [42]. We hope
this paper serves to highlight the power and utility of these techniques, along with the
motivation for implementing them into existing monitoring programs.

Incorporating NN models into a cohesive environmental monitoring framework could
greatly benefit existing monitoring programs, as routine surveillance programs can generate
vast quantities of data. Better predictions of fish health can work to improve the resiliency
of early warning systems for environmental degradation by offering greater sensitivity to
changes in water chemistry. While these models would not be used to determine a causal
relationship, they can provide an initial estimate of which water quality variables may
be driving changes in the health of a fish population. Based on this information, more
detailed studies can be designed to determine if this relationship remains, if it is causal, to
potentially identify sources of these variables, and also to potentially justify detailed and
onerous investigation of solutions [43]. It is important to remember that these techniques
serve as a single tool within the overall framework of environmental monitoring programs,
and while they can improve early warning systems, they must be used in conjunction
with other methods and approaches to ensure the health of the environment is sustained
or improved.

In terms of the interpretability–performance trade-off of the methods considered,
we see that each of the three models achieved the lowest MSPE in two out of six cases.
However, in one case, when the standard NN outperformed the hybrid NN, the hybrid
had very similar accuracy. As such, the hybrid NN would be preferable to the standard
NN for this application, as there is no consistent advantage to one over the other in this
study, but the hybrid NN does allow for some level of interpretation into which water
quality variables may be influencing the response variables. Additionally, as the hybrid
NN out performed the EN in four of the six test cases, we believe the increase in model
accuracy outweighs the loss of interpretability for this application. As such, we find that
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the hybrid NN offers the best solution to the interpretability–performance trade-off issue
when calculating normal ranges for environmental monitoring studies.

5. Conclusions

In this paper, we explore the application of NNs in predicting fish endpoints for obtaining
more accurate normal ranges in monitoring programs in which no prior baseline has been
established. While accurate normal ranges are essential to an effective monitoring program,
it is also critical to understand the key explanatory variables that are driving changes in the
response variables. We build an EN and two NN models to predict the adjusted body weight,
adjusted gonad weight, and adjusted liver weight of trout-perch from the Athabasca River
using water quality variables. We find that the two NN models can provide more accurate
predictions of fish endpoints than the EN in both testing scenarios, and in cases in which the
EN outperforms the NNs, the difference in accuracy is small. Additionally, the hybrid NN
technique consistently provides more accurate, or comparably accurate, predictions of fish
endpoints relative to the EN and standard NN techniques while being more interpretable
than the standard NN. As such, the hybrid NN technique provides an optimal interpretability–
performance trade-off of the models considered in this analysis.

This work also highlights the need for consistent and congruent data collection in
environmental monitoring studies. As the years and locations of fish sampling did not
line up perfectly with the years and sites of water sampling, information was likely lost
during the amalgamation process. This additional information may have provided better
insight into the driving factors influencing aquatic ecosystem health in the Athabasca OSR.
A synergy between water quality data collection and sentinel species data collection may
allow for more powerful statistical analysis to be conducted, which may help to more
accurately model response variation and identify potential causes.

This paper serves as an introduction to applications of machine learning in environ-
mental monitoring studies. Future work should consider other machine learning models,
such as Random Forests (RFs), or other classification and regression tree (CART)-based
models. Tree-based methods may present a better balance of predictive performance and
interpretability. While feature importance can be derived from NNs, many tree-based
methods are able to perform this automatically. In particular, RFs may see success in this
application, as all observations in a particular region are given the same prediction (the
mean), and all fish in the same region share the same water quality variables. Therefore, the
best any model can do is predict the mean of a particular group as accurately as possible.
Furthermore, tree-based methods such as RFs are nonlinear and can also capture complex
interactions among variables, which may make them appropriate for this application.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/environments11050094/s1, Table S1: Selected Hyperparameters for
the Standard NN for each of the three responses; Table S2: Selected Hyperparameters for the Hybrid
NN for each of the three responses.
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The following abbreviations are used in this manuscript:

OSR Oil Sands Region.
JOSM Joint Canada–Alberta Oils Sands Monitoring Program.
NN Neural Network.
EN Elastic Net.
K Condition Factor.
GSI Gonadosomatic Index.
LSI Liver Somatic Index.
ELU Exponential Linear Unit.
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MSE Mean Square Error.
MSPE Mean Square Prediction Error.
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References
1. Environment Canada. Joint Canada/Alberta Implementation Plan for Oil Sands Monitoring; Technical Report En84-89/2013E-PDF;

Environment Canada: Gatineau, QC, Canada, 2012.
2. Stewart-Oaten, A.; Bence, J.R. Temporal and spatial variation in environmental impact assessment. Ecol. Monogr. 2001, 71, 305–339.

[CrossRef]
3. Underwood, A. On beyond BACI: Sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 1994,

4, 3–15. [CrossRef]
4. Anderson, M.J.; Thompson, A.A. Multivariate control charts for ecological and environmental monitoring. Ecol. Appl. 2004,

14, 1921–1935. [CrossRef]
5. Kilgour, B.W.; Somers, K.M.; Barrett, T.J.; Munkittrick, K.R.; Francis, A.P. Testing against “normal” with environmental data.

Integr. Environ. Assess. Manag. 2017, 13, 188–197. [CrossRef] [PubMed]
6. Arciszewski, T.J.; Munkittrick, K.R. Development of an adaptive monitoring framework for long-term programs: An example

using indicators of fish health. Integr. Environ. Assess. Manag. 2015, 11, 701–718. [CrossRef] [PubMed]
7. Cook, C.N.; de Bie, K.; Keith, D.A.; Addison, P.F. Decision triggers are a critical part of evidence-based conservation. Biol. Conserv.

2016, 195, 46–51. [CrossRef]
8. Arciszewski, T.J. A Review of Control Charts and Exploring Their Utility for Regional Environmental Monitoring Programs.

Environments 2023, 10, 78. [CrossRef]
9. Wiklund, J.A.; Hall, R.I.; Wolfe, B.B.; Edwards, T.W.; Farwell, A.J.; Dixon, D.G. Use of pre-industrial floodplain lake sediments to

establish baseline river metal concentrations downstream of Alberta oil sands: A new approach for detecting pollution of rivers.
Environ. Res. Lett. 2014, 9, 124019. [CrossRef]

10. McMillan, P.G.; Feng, Z.Z.; Deeth, L.E.; Arciszewski, T.J. Improving monitoring of fish health in the oil sands region using
regularization techniques and water quality variables. Sci. Total Environ. 2022, 811, 152301. [CrossRef]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

12. Biganzoli, E.; Boracchi, P.; Mariani, L.; Ettore, M. Feed forward neural networks for the analysis of censored survival data:
A partial logistic regression approach. Stat. Med. 1998, 17, 1169–1186. [CrossRef]

13. Liang, F.; Li, Q.; Zhou, L. Bayesian Neural Networks for Selection of Drug Sensitive Genes. J. Am. Stat. Assoc. 2018, 113, 955–972.
[CrossRef] [PubMed]

http://doi.org/10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2
http://dx.doi.org/10.2307/1942110
http://dx.doi.org/10.1890/03-5379
http://dx.doi.org/10.1002/ieam.1775
http://www.ncbi.nlm.nih.gov/pubmed/26946471
http://dx.doi.org/10.1002/ieam.1636
http://www.ncbi.nlm.nih.gov/pubmed/25781001
http://dx.doi.org/10.1016/j.biocon.2015.12.024
http://dx.doi.org/10.3390/environments10050078
http://dx.doi.org/10.1088/1748-9326/9/12/124019
http://dx.doi.org/10.1016/j.scitotenv.2021.152301
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D
http://dx.doi.org/10.1080/01621459.2017.1409122
http://www.ncbi.nlm.nih.gov/pubmed/31354179


Environments 2024, 11, 94 16 of 17

14. Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.
2018, 73, 1–15. [CrossRef]

15. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. Stat. Methodol. 2005, 67, 301–320.
[CrossRef]

16. Mannix, A.E.; Dridi, C.; Adamowicz, W.L. Water availability in the oil sands under projections of increasing demands and a
changing climate: An assessment of the Lower Athabasca Water Management Framework (Phase 1). Can. Water Resour. J. 2010,
35, 29–52. [CrossRef]

17. Kelly, E.N.; Schindler, D.W.; Hodson, P.V.; Short, J.W.; Radmanovich, R.; Nielsen, C.C. Oil sands development contributes
elements toxic at low concentrations to the Athabasca River and its tributaries. Proc. Natl. Acad. Sci. USA 2010, 107, 16178–16183.
[CrossRef] [PubMed]

18. Whitfield, C.J.; Watmough, S.A. Acid deposition in the Athabasca Oil Sands Region: A policy perspective. Environ. Monit. Assess.
2015, 187, 1–12. [CrossRef]

19. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
20. Environment and Climate Change Canada. Joint Canada-Alberta Oil Sands Environmental Monitoring Information Portal. 2020.

Available online: https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring.html (accessed on 4
March 2020).

21. Kilgour, B.W.; Munkittrick, K.R.; Hamilton, L.; Proulx, C.L.; Somers, K.M.; Arciszewski, T.; McMaster, M. Developing Triggers for
Environmental Effects Monitoring Programs for Trout-Perch in the Lower Athabasca River (Canada). Environ. Toxicol. Chem.
2019, 38, 1890–1901. [CrossRef]

22. Packard, G.C.; Boardman, T.J. The Misuse of Ratios, Indices, and Percentages in Ecophysiological Research. Physiol. Zool. 1988,
61, 1–9. [CrossRef]

23. Jackson, D.A.; Somers, K.M. Adjusting Mercury Concentration for Fish-Size Covariation: A Multivariate Alternative to Bivariate
Regression. Can. J. Fish. Aquat. Sci. 1993, 50, 2388–2396.

24. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023.
25. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.

2010, 33, 1. [CrossRef] [PubMed]
26. Allaire, J.; Chollet, F. keras: R Interface to ‘Keras’, R package version 2.11.1; R Foundation for Statistical Computing: Vienna,

Austria, 2023.
27. Allaire, J.; Tang, Y. tensorflow: R Interface to ‘TensorFlow’, R package version 2.11.0; R Foundation for Statistical Computing: Vienna,

Austria, 2022.
28. Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
29. Nakkiran, P. Learning rate annealing can provably help generalization, even for convex problems. arXiv 2020, arXiv:2005.07360.
30. Li, Y.; Wei, C.; Ma, T. Towards explaining the regularization effect of initial large learning rate in training neural networks. Adv.

Neural Inf. Process. Syst. 2019, 32, 1–12.
31. Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315.

[CrossRef]
32. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
33. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 25th Annual

Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, 12–15 December 2011; Volume 24.
34. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the

25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 2,
pp. 2951–2959.

35. Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to
Active User Modeling and Hierarchical Reinforcement Learning. arXiv 2010, arXiv:1012.2599.

36. Hoffman, M.; Brochu, E.; De Freitas, N. Portfolio Allocation for Bayesian Optimization. In Proceedings of the UAI, Barcelona,
Spain, 14–17 July 2011; pp. 327–336.

37. Yachen, Y. rBayesianOptimization: Bayesian Optimization of Hyperparameters, R package version 1.2.0; R Foundation for Statistical
Computing: Vienna, Austria, 2021.

38. Opitz, D.; Maclin, R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 1999, 11, 169–198. [CrossRef]
39. Arciszewski, T.J.; Hazewinkel, R.R.; Munkittrick, K.R.; Kilgour, B.W. Developing and applying control charts to detect changes in

water chemistry parameters measured in the Athabasca River near the oil sands: A tool for surveillance monitoring: Control
charts and water chemistry parameters. Environ. Toxicol. Chem. 2018, 37, 2296–2311. [CrossRef]

40. Taylor, L.N.; McGeer, J.C.; Wood, C.M.; McDonald, D.G. Physiological effects of chronic copper exposure to rainbow trout
(Oncorhynchus mykiss) in hard and soft water: Evaluation of chronic indicators. Environ. Toxicol. Chem. 2000, 19, 2298–2308.
[CrossRef]

41. Bhullar, A.; Nadeem, K.; Ali, R.A. Simultaneous multi-crop land suitability prediction from remote sensing data using semi-
supervised learning. Sci. Rep. 2023, 13, 6823. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.4296/cwrj3501029
http://dx.doi.org/10.1073/pnas.1008754107
http://www.ncbi.nlm.nih.gov/pubmed/20805486
http://dx.doi.org/10.1007/s10661-015-4979-3
http://dx.doi.org/10.1016/0893-6080(91)90009-T
https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring.html
http://dx.doi.org/10.1002/etc.4469
http://dx.doi.org/10.1086/physzool.61.1.30163730
http://dx.doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1613/jair.614
http://dx.doi.org/10.1002/etc.4168
http://dx.doi.org/10.1002/etc.5620190920
http://dx.doi.org/10.1038/s41598-023-33840-6
http://www.ncbi.nlm.nih.gov/pubmed/37100875


Environments 2024, 11, 94 17 of 17

42. Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of
methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [CrossRef]

43. Arciszewski, T.J.; Munkittrick, K.R.; Scrimgeour, G.J.; Dubé, M.G.; Wrona, F.J.; Hazewinkel, R.R. Using adaptive processes and
adverse outcome pathways to develop meaningful, robust, and actionable environmental monitoring programs. Integr. Environ.
Assess. Manag. 2017, 13, 877–891. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1748-9326/ab1b7d
http://dx.doi.org/10.1002/ieam.1938
http://www.ncbi.nlm.nih.gov/pubmed/28383771

	Introduction
	Materials and Methods
	Trout-Perch Data
	Water Quality Data
	Amalgamated Data
	Scaling Endpoints
	Data Partitioning
	Analysis Techniques
	Hyperparameter Optimization
	Model Assessments

	Results
	Temporal Split Results
	Random Split Results

	Discussion
	Conclusions
	References

