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ABSTRACT 
 

The RNA interference (RNAi) has emerged as a promising approach for targeted and eco-friendly 
insect pest management in sustainable agriculture. The RNAi involves the silencing of specific 
genes through the introduction of double-stranded RNA (dsRNA), leading to the degradation of 
complementary mRNA and subsequent reduction in the expression of targeted proteins. This 
chapter provides a comprehensive overview of the current state and future prospects of RNAi-
based strategies for insect pest control. We discuss the molecular mechanisms underlying RNAi, 
delivery methods for dsRNA, and the design and selection of effective target genes. The 
application of RNAi in controlling various insect pests, including lepidopterans, coleopterans, and 
hemipterans is extensively reviewed. also highlight the potential challenges and limitations 
associated with RNAi-based pest management, such as off-target effects, variable efficacy across 
insect species, and the development of resistance. Strategies to overcome these challenges, 
including the use of nanoparticle-based delivery systems and the combination of RNAi with other 
pest control methods, are explored. Furthermore, discuss the environmental and ecological 
considerations surrounding the use of RNAi in agriculture, emphasizing the importance of 
assessing non-target effects and the need for appropriate risk assessment frameworks. The 
chapter concludes by outlining future research directions and the potential for RNAi to revolutionize 
insect pest management, contributing to the development of sustainable and resilient agricultural 
systems.  
 

 

Keywords: RNA interference; insect pest management; sustainable agriculture; dsRNA delivery; off-
target effects. 

 

1. INTRODUCTION    
 
Insect pests pose significant challenges to 
agricultural production, causing substantial yield 
losses and economic damage worldwide [1]. 
Traditional pest control methods, such as the use 
of chemical insecticides, have been widely 
employed to mitigate these losses. However, the 
excessive and indiscriminate use of insecticides 
has led to numerous adverse consequences, 
including the development   of insecticide 
resistance, negative impacts on non-target 
organisms, and environmental contamination 
[2,3]. In response to these challenges, there is a 
growing need for alternative, eco-friendly, and 
targeted pest management strategies that can 
ensure sustainable agriculture while minimizing 
the reliance on chemical insecticides [4]. 
 

RNA interference (RNAi) has emerged as a 
promising approach for targeted insect pest 
control, offering a highly specific and 
environmentally benign alternative to 
conventional pest management methods [5,6]. 
The RNAi is a naturally occurring post-
transcriptional gene silencing mechanism that 
involves the degradation of messenger RNA 
(mRNA) through the introduction of 
complementary double-stranded RNA (dsRNA) 
[7]. By exploiting this mechanism, RNAi-based 
strategies aim to silence specific genes essential 
for insect survival, development, or reproduction, 

leading to the suppression of target pest 
populations [8].  
 
The application of RNAi in insect pest 
management has gained significant attention in 
recent years, with numerous studies 
demonstrating its potential in controlling a wide 
range of insect pests across various agricultural 
crops [9-11]. RNAi-based approaches offer 
several advantages over traditional pest control 
methods, including high specificity, reduced off-
target effects, and the potential for long-term and 
sustainable pest suppression [12]. However, the 
successful implementation of RNAi in field 
conditions faces several challenges, such as the 
efficient delivery of dsRNA to target insects, the 
variable efficacy across different insect species, 
and the potential development of resistance 
[13,14]. This chapter provides a comprehensive 
overview of the current state and future 
prospects of RNAi-based strategies for eco-
friendly and targeted insect pest management in 
sustainable agriculture. We discuss the 
molecular mechanisms underlying RNAi, the 
design and selection of effective target genes, 
and the various delivery methods for dsRNA. The 
application of RNAi in controlling major insect 
pests, including lepidopterans, coleopterans, and 
hemipterans, is extensively reviewed, 
highlighting the successes and challenges 
encountered in different agricultural systems. We 
also explore the potential environmental and 
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Fig. 1. Application of RNAi in insect pest management 
 
ecological considerations associated with the use 
of RNAi in pest management, emphasizing the 
importance of assessing non-target effects and 
developing appropriate risk assessment 
frameworks. The chapter concludes by outlining 
future research directions and the potential for 
RNAi to revolutionize insect pest management, 
contributing to the development of sustainable 
and resilient agricultural systems. 

 
2. MOLECULAR MECHANISMS OF RNA 

INTERFERENCE 

 
RNA interference (RNAi) is a conserved 
eukaryotic mechanism that regulates gene 
expression through the sequence-specific 
degradation of messenger RNA (mRNA) [15]. 
The discovery of RNAi in the nematode 
Caenorhabditis elegans by Fire and Mello in 
1998 [16] has revolutionized our understanding 
of gene regulation and opened up new avenues 
for targeted gene silencing in various organisms, 
including insects [17]. 
 
The RNAi pathway is triggered by the presence 
of double-stranded RNA (dsRNA) molecules, 
which can be introduced exogenously or 
generated endogenously within the cell [18]. The 
dsRNA is processed by the enzyme Dicer, an 
RNase III-type endonuclease, into short 
interfering RNAs (siRNAs) of approximately 21-
23 nucleotides in length [19]. These siRNAs are 
then incorporated into the RNA-induced silencing 
complex (RISC), where they guide the sequence-

specific degradation of complementary mRNA 
targets [20]. 
 

The core component of RISC is the Argonaute 
(AGO) protein, which contains both RNA-binding 
and endonuclease domains [21]. Within RISC, 
one strand of the siRNA (the guide strand) is 
retained, while the other strand (the passenger 
strand) is degraded [22]. The guide strand directs 
the RISC complex to the complementary mRNA 
target, leading to its cleavage and subsequent 
degradation [23]. This process results in the 
post-transcriptional silencing of the target gene, 
reducing its expression and ultimately affecting 
the corresponding protein levels [24]. 
 

In addition to the siRNA pathway, RNAi can also 
be mediated through microRNAs (miRNAs), 
which are endogenously encoded small RNAs 
that regulate gene expression through 
translational repression or mRNA degradation 
[25]. The miRNAs are processed from longer 
primary transcripts (pri-miRNAs) by the enzymes 
Drosha and Dicer, generating mature miRNAs of 
approximately 22 nucleotides in length [26]. Like 
siRNAs, miRNAs are incorporated into RISC and 
guide the sequence-specific regulation of target 
mRNAs [27]. 
 

The RNAi machinery is highly conserved across 
eukaryotic organisms, including insects [28]. In 
insects, the RNAi pathway plays crucial roles in 
various biological processes, such as 
development, reproduction, and defense against 
viruses [29,30]. The presence of a functional 
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Fig. 2. Molecular mechanisms of RNA interference 
 
RNAi pathway in insects has opened up the 
possibility of exploiting this mechanism for 
targeted pest management [31]. 
 
The efficiency of RNAi in insects varies among 
different species and depends on several factors, 
such as the delivery method of dsRNA, the 
stability of dsRNA in the insect gut, and the 
presence of RNAi-inhibiting proteins [32,33]. 
Some insect orders, such as Coleoptera                    
and Lepidoptera, exhibit a robust RNAi response, 
while others, like Diptera and Hemiptera, show a 
more variable response [34,35]. Understanding 
the molecular basis of these differences is crucial 

for the successful application of RNAi in insect 
pest management. 
 

Recent advances in understanding of the RNAi 
pathway in insects have provided valuable 
insights into the design and optimization of RNAi-
based strategies for pest control [36]. The 
identification of key genes involved in the RNAi 
machinery, such as Dicer, Argonaute, and 
systemic RNA interference deficient (SID) 
proteins, has enabled the development of more 
efficient dsRNA delivery methods and the 
enhancement of RNAi efficacy in target insects 
[37,38]. 
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3. DESIGN AND SELECTION OF TARGET 
GENES FOR RNAI-BASED PEST 
CONTROL 

 

The success of RNAi-based insect pest 
management relies heavily on the proper design 
and selection of target genes [39]. Ideal target 
genes should be essential for insect survival, 
development, or reproduction, and their silencing 
should result in significant pest suppression 
without causing off-target effects on non-target 
organisms [40]. The identification of suitable 
target genes requires a thorough understanding 
of insect biology, genomics, and the RNAi 
pathway [41].  
 

3.1 Identification of Essential Genes 
 

One approach to identify potential target genes is 
to focus on essential genes that are critical for 
insect survival and development [42]. These 
genes can be involved in various biological 
processes, such as embryonic development, 
molting, metamorphosis, and reproduction [43]. 
Silencing of essential genes through RNAi can 
lead to lethal or sublethal effects on the                 
target insect, resulting in population suppression 
[44] 
. 

Examples of essential genes that have been 
successfully targeted for RNAi-based pest 
control: 
 

• Chitin synthase (CHS): CHS is a key 
enzyme involved in the synthesis of chitin, 
a major component of the insect 
exoskeleton [45]. Silencing of CHS genes 
has been shown to disrupt molting and 

cause mortality in various insect species, 
such as the African cotton leafworm 
(Spodoptera littoralis) [46] and the 
Colorado potato beetle (Leptinotarsa 
decemlineata) [47]. 

• Ecdysone receptor (EcR): EcR is a nuclear 
receptor that mediates the action of the 
molting hormone ecdysone, which 
regulates insect growth and development 
[48]. RNAi-mediated knockdown of EcR 
has been demonstrated to inhibit molting 
and cause developmental abnormalities in 
insects, such as the red flour beetle 
(Tribolium castaneum) [49] and the 
tobacco cutworm,Spodoptera litura [50]. 

• Vitellogenin (Vg): Vg is a precursor protein 
of egg yolk that plays a crucial role in 
insect reproduction [51]. Silencing of Vg 
genes through RNAi has been shown to 
reduce fecundity and egg viability in 
various insect species, including the brown 
planthopper,Nilaparvata lugens [52] and 
the diamondback moth,Plutella xylostella, 
[53]. 

 

3.2 Comparative Genomics and 
Transcriptomics 

 

Comparative genomics and transcriptomics 
approaches can be employed to identify 
conserved and species-specific genes that are 
potential targets for RNAi-based pest control 
[54]. By comparing the genomes or 
transcriptomes of target and non-target species, 
researchers can identify genes that are unique to 
the target pest or have divergent sequences, 
reducing the risk of off-target effects [55]. 

 

 
 

Fig. 3. Design and selection of target genes for RNAi-based pest control 
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Fig. 4. Comparative genomics and transcriptomics 
 
High-throughput sequencing technologies, such 
as RNA sequencing (RNA-seq), have greatly 
facilitated the identification of candidate genes 
for RNAi [56]. RNA-seq allows for the 
comprehensive analysis of gene expression 
profiles, revealing genes that are differentially 
expressed across different developmental 
stages, tissues, or in response to specific 
treatments [57]. This information can be used to 
prioritize target genes based on their expression 
patterns and potential roles in insect biology [58]. 
 

3.3 In silico Design of dsRNA 
 
Once potential target genes have been identified, 
the next step is to design effective dsRNA 
sequences for RNAi [59]. The design of dsRNA 
involves several considerations, such as the 
length of the dsRNA, the target region within the 
gene, and the potential for off-target effects [60].  
 
The length of the dsRNA can influence the 
efficiency of RNAi, with longer dsRNA molecules 
generally eliciting a stronger RNAi response [61]. 
However, longer dsRNAs also increase the risk 
of off-target effects, as they may contain 
sequences that are complementary to 
unintended genes [62]. A balance must be struck 
between dsRNA length and specificity to 

optimize RNAi efficiency while minimizing off-
target effects [63]. 
 
The target region within the gene is another 
important consideration in dsRNA design [64]. 
Regions that are conserved across different 
isoforms or splice variants of the target gene are 
preferable, as they can ensure the silencing of all 
relevant transcripts [65]. Additionally, targeting 
regions with minimal secondary structure and 
high accessibility to the RNAi machinery can 
enhance the efficiency of gene silencing [66]. 
 
In silico tools and algorithms have been 
developed to aid in the design of effective and 
specific dsRNA sequences [67]. These tools can 
predict the secondary structure of the target 
mRNA, identify potential off-target genes, and 
optimize the dsRNA sequence for maximum 
RNAi efficiency [68,69]. Examples of such        
tools include siDirect [70], E-RNAi [71], and DSIR 
[72]. 
 

3.4 Experimental Validation 
 
After the in silico design of dsRNA, experimental 
validation is necessary to confirm the efficacy 
and specificity of the selected target genes and 
dsRNA sequences [73]. This validation can be 
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performed through various methods, such as 
quantitative real-time PCR (qRT-PCR), western 
blotting, or phenotypic assays [74]. 
 
The qRT-PCR is commonly used to measure the 
reduction in target gene expression following 
dsRNA treatment [75]. By comparing the mRNA 
levels of the target gene in treated and untreated 
insects, the efficiency of RNAi can be assessed 
[76]. Western blotting can be employed to 
evaluate the reduction in target protein levels, 
providing further confirmation of the RNAi effect 
[77]. 
 
Phenotypic assays are essential to determine the 
impact of gene silencing on insect survival, 
development, and reproduction [78]. These 
assays can involve monitoring parameters such 
as mortality, growth rate, fecundity, and fertility in 
treated insects [79]. The results of these assays 
provide valuable information on the potential of 
the selected target genes for pest control 
applications [80]. 
 

3.5 Resistance Management 
 

The development of resistance to RNAi-based 
pest control strategies is a potential concern that 
must be addressed during the design and 
selection of target genes [81]. Insects may 
evolve resistance to RNAi through various 
mechanisms, such as mutations in the target 
gene, enhanced degradation of dsRNA, or 
reduced uptake of dsRNA [82,83]. 
 

To mitigate the risk of resistance, several 
strategies can be employed in the selection of 
target genes [84]. One approach is to target 
multiple genes simultaneously, either through the 
use of a single dsRNA that targets conserved 
regions across different genes or through the 
application of multiple dsRNAs targeting distinct 
genes [85]. This strategy reduces the likelihood 
of resistance developing, as insects would need 
to evolve resistance to multiple genes 
concurrently [86]. 
 

Another approach is to target genes that are 
essential for insect survival and have a low 
tolerance for mutations [87]. Mutations in such 
genes are likely to be lethal or have severe 
fitness costs, reducing the probability of 
resistance development [88]. Additionally, 
targeting genes that are not under strong 
selection pressure in the absence of the RNAi-
based control can also reduce the risk of 
resistance [89]. 

Monitoring and early detection of resistance 
development are crucial for the successful 
implementation of RNAi-based pest management 
[90]. Regular surveillance of target pest 
populations and assessment of their 
susceptibility to RNAi can help identify potential 
resistance issues early on [91]. This information 
can guide the adaptation of RNAi-based 
strategies, such as rotating target genes or 
combining RNAi with other pest control              
methods to maintain their effectiveness over time 
[92]. 
 

4. DELIVERY METHODS FOR DSRNA IN 
INSECT PEST MANAGEMENT 

 
The efficient delivery of dsRNA to the target 
insect is a critical factor in the success of RNAi-
based pest management [93]. Various delivery 
methods have been explored, each with its own 
advantages and limitations [94]. The choice of 
delivery method depends on factors such as the 
target insect species, the crop system, and the 
desired mode of action [95]. 
 

4.1. Oral Delivery 
 
Oral delivery is the most common and 
straightforward method of dsRNA administration 
in insects [96]. This method involves the 
ingestion of dsRNA by the target insect, either 
through feeding on dsRNA-expressing transgenic 
plants or through the application of dsRNA-
containing baits or sprays [97]. 
 
4.1.1 Transgenic plants 
 
The development of transgenic plants that 
express dsRNA targeting specific insect genes 
has shown great promise for RNAi-based pest 
control [98]. By engineering plants to produce 
dsRNA, a continuous supply of the RNAi trigger 
can be provided to the target insects as they feed 
on the plant tissues [99]. This approach offers a 
sustainable and targeted method for pest 
management, reducing the need for external 
dsRNA application [100]. 
 
The generation of dsRNA-expressing transgenic 
plants involves the introduction of a construct 
containing the target gene sequence in an 
inverted repeat orientation, driven by a strong 
promoter [101]. When transcribed, the inverted 
repeat sequence forms a hairpin RNA (hpRNA) 
structure, which is processed by the plant's RNAi 
machinery into siRNAs [102]. These siRNAs are 
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then ingested by the insect and trigger the RNAi 
response, leading to the silencing of the target 
gene [103]. 
 
Several studies have demonstrated the 
effectiveness of transgenic plants expressing 
dsRNA in controlling various insect pests. For 
example, transgenic corn expressing dsRNA 
targeting the V-ATPase gene of the western corn 
rootworm (Diabrotica virgifera virgifera) has 
shown significant reduction in root damage and 
insect survival [104]. Similarly, transgenic cotton 
expressing dsRNA against the CYP6AE14 gene 
of the cotton bollworm (Helicoverpa armigera) 
has exhibited increased resistance to the pest 
[105]. 
 
The use of transgenic plants for RNAi-based pest 
control offers several advantages, such as the 
continuous production of dsRNA, the potential for 
long-term pest suppression, and the reduced 
need for external dsRNA application [106]. 
However, there are also challenges and 
concerns associated with this approach, 
including the potential for off-target effects on 
non-target organisms, the development of 
resistance in target pests, and the public 
acceptance of genetically modified crops 
[107,108]. 
 
4.1.2 dsRNA-containing baits and sprays 
 
Another approach for oral delivery of dsRNA 
involves the application of dsRNA-containing 
baits or sprays directly onto the plant surface or 
into the soil [109]. This method allows for the 
targeted delivery of dsRNA to the insect pest 
without the need for transgenic plants [110]. 
 
dsRNA can be formulated into baits or sprays 
using various carriers, such as nanoparticles, 
liposomes, or polymers, which protect the dsRNA 
from degradation and facilitate its uptake by the 
insect [111,112]. These formulations can be 
applied to the crop using conventional spraying 
equipment or through irrigation systems [113]. 
 

The effectiveness of dsRNA-containing baits and 
sprays has been demonstrated in several 
studies. For instance, the application of dsRNA 
targeting the beta-tubulin gene of the Colorado 
potato beetle (Leptinotarsa decemlineata) on 
potato leaves resulted in significant mortality and 
reduced feeding damage [114]. Similarly, the use 
of dsRNA-containing baits targeting the 
carboxylesterase gene of the Asian citrus psyllid 
(Diaphorina citri) led to a decrease in insect 

populations and reduced transmission of the 
citrus greening disease [115]. 
 
The main advantages of using dsRNA-containing 
baits and sprays include the flexibility in 
application timing, the ability to target specific 
insect stages or populations, and the potential for 
integration with other pest management 
strategies [116]. However, challenges such as 
the stability of dsRNA in the environment, the 
efficiency of uptake by the target insects, and the 
potential for off-target effects need to be 
addressed for the successful implementation of 
this approach [117,118]. 
 

4.2 Injection and Soaking 
 
Injection and soaking are two common methods 
used for the direct delivery of dsRNA into insects, 
particularly in laboratory studies [119]. While 
these methods are not practical for large-scale 
field applications, they provide valuable insights 
into the RNAi process and aid in the identification 
of potential target genes [120]. 
 
4.2.1 Injection 
 
Injection involves the direct introduction of 
dsRNA into the insect's body cavity using a fine 
needle or a microinjector [121]. This method 
allows for the precise delivery of a known 
quantity of dsRNA to the target tissue or organ 
[122]. Injection has been widely used to study the 
effects of RNAi on insect physiology, 
development, and behavior [123]. 
 
The effectiveness of RNAi through injection has 
been demonstrated in various insect species, 
including the fruit fly (Drosophila melanogaster) 
[124], the red flour beetle (Tribolium castaneum) 
[125], and the tobacco hornworm (Manduca 
sexta) [126]. Injection of dsRNA has been used 
to investigate the functions of genes involved in 
processes such as metamorphosis, reproduction, 
and immunity [127,128]. 
 
However, injection is a labor-intensive and 
invasive method that is not suitable for large-
scale pest management applications [129]. It 
also requires specialized equipment and skilled 
personnel, limiting its practicality in field settings 
[130]. 
 

4.2.2 Soaking 
 

Soaking involves the immersion of insects or 
insect tissues in a solution containing dsRNA 
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[131]. This method is particularly useful for 
studying RNAi in smaller insects or in specific 
tissues, such as the midgut or the salivary glands 
[132]. 
 
Soaking has been successfully used to deliver 
dsRNA into various insect species, including the 
whitefly (Bemisia tabaci) [133], the oriental fruit 
fly (Bactrocera dorsalis) [134], and the silkworm 
(Bombyx mori) [135]. In these studies, soaking 
has been employed to investigate the roles of 
genes involved in processes such as digestion, 
detoxification, and virus transmission [136,137]. 
 
Like injection, soaking is primarily used in 
laboratory settings and is not practical for large-
scale field applications [138]. However, it 
provides a useful tool for studying the RNAi 
process and identifying potential target genes for 
pest management [139]. 
 

4.3 Topical Application 
 

Topical application involves the direct application 
of dsRNA onto the insect's cuticle or surface 
[140]. This method relies on the absorption of 
dsRNA through the insect's integument and its 
subsequent transport to the target tissues [141]. 
 

Topical application of dsRNA has been 
demonstrated in several insect species, such as 
the tobacco budworm (Heliothis virescens) [142], 
the diamondback moth (Plutella xylostella) [143], 
and the green peach aphid (Myzus persicae) 
[144]. In these studies, dsRNA was applied to the 
insect's cuticle using droplets or sprays, resulting 
in gene silencing and various phenotypic effects 
[145,146]. 
 

The efficiency of topical application depends on 
factors such as the permeability of the insect's 

cuticle, the stability of dsRNA on the surface, and 
the ability of the insect to absorb and transport 
the dsRNA to the target tissues [147]. To 
enhance the efficacy of topical                          
application, various formulations and delivery 
vehicles have been explored, such as 
nanoparticles, liposomes, and penetration 
enhancers [148,149]. 
 
Topical application offers a non-invasive and 
relatively simple method for dsRNA delivery, 
making it a potential option for field-based pest 
management [150]. However, further research is 
needed to optimize the formulations and 
application techniques to improve the efficiency 
and practicality of this approach [151]. 
 

5. RNAI-BASED CONTROL OF MAJOR 
INSECT PESTS 

 
RNAi has been explored as a potential tool for 
the control of various major insect pests that 
cause significant damage to agricultural crops 
worldwide [152]. In this section, we will discuss 
the application of RNAi-based strategies for the 
management of key insect pests from different 
orders, including Lepidoptera, Coleoptera, 
Hemiptera, and Diptera. 
 

5.1 Lepidopteran Pests 
 
Lepidopteran insects, which include moths and 
butterflies, are among the most destructive pests 
of agricultural crops [153]. Many lepidopteran 
species, such as the cotton bollworm 
(Helicoverpa armigera), the tobacco                    
cutworm (Spodoptera litura), and the 
diamondback moth(Plutella xylostella), cause 
significant yield losses in various crops 
worldwide [154,155]. 

 
Table 1. Examples of RNAi-based control of lepidopteran pests 

 

Insect Pest Target Gene Delivery Method Effect Reference 

Helicoverpa 
armigera 

Chitinase Transgenic 
tobacco 

Disrupted molting, 
increased mortality 

[156] 

Spodoptera 
litura 

Ecdysone receptor dsRNA injection Developmental 
abnormalities, reduced 
survival 

[157] 

Plutella 
xylostella 

Acetylcholinesterase Oral delivery 
(dsRNA-containing 
diet) 

Reduced survival, 
impaired neural 
transmission 

[163] 

Heliothis 
virescens 

Juvenile hormone acid 
methyltransferase 

Topical application Disrupted 
metamorphosis, 
reduced survival 

[164] 
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Table 2. Examples of RNAi-based control of coleopteran pests 
 

Insect Pest Target Gene Delivery Method Effect Reference 

Leptinotarsa 
decemlineata 

Actin Oral delivery (dsRNA-
containing bait) 

Reduced survival, 
impaired locomotion 

[168] 

Diabrotica 
virgifera virgifera 

V-ATPase Transgenic corn Decreased feeding, 
increased mortality 

[169] 

Tribolium 
castaneum 

Ribosomal 
protein S6 

dsRNA injection Developmental arrest, 
reduced survival 

[173] 

Cylas puncticollis Cathepsin L Oral delivery (dsRNA-
containing diet) 

Reduced feeding, 
increased mortality 

[174] 

 
Table 3. Examples of RNAi-based control of hemipteran pests 

 

Insect Pest Target Gene Delivery Method Effect Reference 

Myzus 
persicae 

Salivary protein Oral delivery 
(dsRNA-containing 
diet) 

Reduced survival, 
decreased fecundity 

[178] 

Aphis 
gossypii 

Acetylcholinesterase dsRNA injection Impaired neural 
transmission, increased 
mortality 

[179] 

Bemisia 
tabaci 

Heat shock protein 70 Oral delivery 
(dsRNA-containing 
diet) 

Reduced virus 
transmission 

[182] 

Nilaparvata 
lugens 

Trehalose-6-
phosphate synthase 

Transgenic rice Impaired trehalose 
metabolism, reduced 
survival 

[186] 

 

RNAi has shown promise as a potential control 
strategy for lepidopteran pests. Several studies 
have demonstrated the effectiveness of RNAi in 
silencing essential genes and inducing mortality 
in these insects. For example, the silencing of 
the chitinase gene in the cotton bollworm 
resulted in disrupted molting and increased 
mortality [156]. Similarly, RNAi-mediated 
knockdown of the ecdysone receptor gene in the 
tobacco cutworm led to developmental 
abnormalities and reduced survival [157]. 
 

The delivery of dsRNA to lepidopteran pests has 
been achieved through various methods, 
including oral delivery via transgenic plants or 
dsRNA-containing baits, and topical application 
[158,159]. Transgenic plants expressing dsRNA 
targeting essential genes have been developed 
for several lepidopteran pests, such as the cotton 
bollworm and the tobacco budworm [160,161]. 
These transgenic plants have shown increased 
resistance to the target pests and reduced crop 
damage [162]. 
 

5.2 Coleopteran Pests 
 

Coleopteran insects, or beetles, include many 
important agricultural pests, such as the 

Colorado potato beetle (Leptinotarsa 
decemlineata), the western corn rootworm 
(Diabrotica virgifera virgifera), and the red flour 
beetle (Tribolium castaneum) [165,166]. These 
pests cause significant damage to crops, leading 
to substantial economic losses [167]. 
 

RNAi has been successfully used to control 
coleopteran pests by targeting essential genes 
involved in various biological processes. For 
instance, the silencing of the actin gene in the 
Colorado potato beetle resulted in reduced 
survival and impaired locomotion [168]. The 
knockdown of the V-ATPase gene in the western 
corn rootworm led to decreased feeding and 
increased mortality [169]. 
 

Oral delivery of dsRNA through transgenic plants 
or dsRNA-containing baits has been the primary 
method for RNAi-based control of coleopteran 
pests [170]. Transgenic corn expressing dsRNA 
targeting the Snf7 gene of the western corn 
rootworm has been developed and has shown 
significant protection against the pest [171]. 
Additionally, dsRNA-containing baits have been 
used to control the Colorado potato beetle, 
resulting in reduced feeding damage and 
increased mortality [172]. 
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Table 4. Examples of RNAi-based control of dipteran pests 
 

Insect Pest Target Gene Delivery 
Method 

Effect Reference 

Drosophila 
suzukii 

Ribosomal 
protein L19 

Oral delivery 
(dsRNA-
containing diet) 

Decreased survival, reduced 
fecundity 

[189] 

Aedes 
aegypti 

Odorant 
binding 
protein 

dsRNA 
injection 

Reduced host-seeking behavior, 
decreased blood-feeding success 

[193] 

Anopheles 
gambiae 

Salivary gland 
protein (SG1) 

dsRNA 
injection 

Impaired blood-feeding, reduced 
parasite transmission 

[197] 

Ceratitis 
capitata 

Transformer-2 Oral delivery 
(dsRNA-
containing diet) 

Feminization of males, reduced 
fertility 

[198] 

 

5.3 Hemipteran Pests 
 

Hemipteran insects, which include aphids, 
whiteflies, and planthoppers, are major pests of 
various crops worldwide [175]. These insects 
cause damage through direct feeding and by 
transmitting plant viruses [176].  
 

The green peach aphid (Myzus persicae) is a 
significant pest of many crops and a vector of 
plant viruses [177]. RNAi-mediated silencing of 
the salivary protein gene in this aphid resulted in 
reduced survival and fecundity [178]. Similarly, 
the knockdown of the acetylcholinesterase gene 
in the cotton aphid (Aphis gossypii) led to 
impaired neural transmission and increased 
mortality [179]. 
 

In the whitefly (Bemisia tabaci), RNAi has been 
used to target genes involved in virus 
transmission and insecticide resistance 
[180,181]. The silencing of the heat shock protein 
70 gene in this insect reduced its ability to 
transmit the tomato yellow leaf curl virus [182]. 
 

Oral delivery of dsRNA through transgenic plants 
and dsRNA-containing diets has been the 
primary approach for RNAi-based control of 
hemipteran pests [183,184]. Transgenic tobacco 
plants expressing dsRNA targeting the 
cytochrome P450 gene of the cotton aphid                
have shown increased resistance to the pest 
[185]. 
 

5.4 Dipteran Pests 
 

Dipteran  insects,  such as flies and  mosquitoes, 
include  several  important   agricultural   and 
medical pests [187]. The spotted wing drosophila 
(Drosophila suzukii) is a significant pest of soft-
skinned fruits, causing substantial economic 

losses [188]. RNAi has been used to target 
essential genes in this pest, such as the 
ribosomal protein L19 gene, resulting in 
decreased survival and reduced fecundity            
[189]. 

 
Mosquitoes, such as Aedes aegypti and 
Anopheles gambiae, are major vectors of human 
diseases, including dengue fever and malaria 
[190]. RNAi has been explored as a potential tool 
for mosquito control by targeting genes involved 
in disease transmission and insecticide 
resistance [191,192]. The silencing of the 
odorant binding protein gene in A.                         
aegypti resulted in reduced host-seeking 
behavior and decreased blood-feeding success 
[193]. 

 
The delivery of dsRNA to dipteran pests has 
been achieved through various methods, 
including injection, soaking, and topical 
application [194,195]. Oral delivery of dsRNA 
through dsRNA-containing diets has also been 
demonstrated in the spotted wing drosophila 
[196]. 

 
6. CHALLENGES AND LIMITATIONS OF 

RNAI-BASED INSECT PEST 
MANAGEMENT 

 
Despite the promising potential of RNAi as a tool 
for insect pest management, several challenges 
and limitations need to be addressed for its 
successful implementation in agricultural 
systems [199]. These challenges include variable 
RNAi efficiency across insect species, potential 
off-target effects, environmental stability of 
dsRNA, and the development of resistance in 
target pests [200,201]. 
 



 
 
 
 

Hasan et al.; J. Exp. Agric. Int., vol. 46, no. 6, pp. 833-863, 2024; Article no.JEAI.117089 
 
 

 
844 

 

6.1 Variable RNAi Efficiency 
 
The efficiency of RNAi varies significantly among 
different insect species and even among different 
populations of the same species [202]. This 
variability can be attributed to factors such as 
differences in the uptake and processing of 
dsRNA, the presence of RNAi-inhibiting 
enzymes, and the specificity of the RNAi 
machinery [203,204]. 

 
Lepidopteran insects, for example, have been 
reported to exhibit lower RNAi efficiency 
compared to coleopteran insects [205]. This 
difference has been attributed to the presence of 
dsRNA-degrading enzymes in the gut of 
lepidopteran larvae, which can limit the efficacy 
of orally delivered dsRNA [206]. In contrast, 
coleopteran insects generally show a more 
robust RNAi response, possibly due to the 
absence or lower activity of such enzymes            
[207]. 

 
To overcome the variable RNAi efficiency across 
insect species, researchers have explored 
various strategies, such as the use of different 
dsRNA delivery methods, the optimization of 
dsRNA design, and the identification of more 
susceptible target genes [208,209]. Additionally, 
the development of formulations that protect 
dsRNA from degradation and enhance its uptake 
by the insect gut has shown promise in improving 
RNAi efficiency [210]. 

 
6.2 Off-Target Effects 
 
Another challenge associated with RNAi-based 
pest management is the potential for off-target 
effects, where the dsRNA intended to silence a 
specific gene in the target insect also affects 
unintended genes or non-target organisms [211]. 
Off-target effects can occur due to sequence 
similarities between the dsRNA and non-target 
genes, leading to the unintended silencing of 
these genes [212]. 

 
To minimize off-target effects, careful design and 
selection of dsRNA sequences are crucial [213]. 
In silico tools can be used to identify potential off-
target genes and design dsRNA sequences that 
are specific to the target gene [214]. Additionally, 
the use of multiple dsRNAs targeting different 
regions of the same gene can reduce the risk of 
off-target effects, as it is less likely that all 
dsRNAs will have significant sequence 
similarities with non-target genes [215]. 

The potential impact of RNAi-based pest control 
on non-target organisms, such as beneficial 
insects, pollinators, and soil microorganisms, is 
another important consideration [216]. Studies 
have shown that the ingestion of dsRNA by non-
target organisms can lead to gene silencing and 
adverse effects on their fitness and survival 
[217,218]. Therefore, it is essential to conduct 
comprehensive risk assessments and develop 
strategies to minimize the exposure of non-target 
organisms to dsRNA [219]. 
 

6.3 Environmental Stability of dsRNA 
 
The environmental stability of dsRNA is a critical 
factor in the success of RNAi-based pest 
management [220]. When dsRNA is delivered to 
the target insects through transgenic plants or 
dsRNA-containing baits and sprays, it is exposed 
to various environmental factors that can affect 
its stability and persistence [221]. 
 
Factors such as UV radiation, temperature, 
humidity, and the presence of microorganisms 
can degrade dsRNA in the environment 
[222,223]. The degradation of dsRNA can reduce 
its effectiveness in inducing RNAi in the target 
insects and may require frequent applications to 
maintain pest control [224]. 
 
To enhance the environmental stability of 
dsRNA, various formulations and delivery 
systems have been developed [225]. These 
include the use of nanoparticles, liposomes, and 
polymers that can protect dsRNA from 
degradation and improve its delivery to the target 
insects [226,227]. Additionally, the expression of 
dsRNA in chloroplasts of transgenic plants has 
been shown to increase its stability and 
persistence in the environment [228]. 
 

6.4 Development of Resistance 
 

The development of resistance to RNAi-based 
pest control is a potential long-term challenge 
that needs to be addressed [229]. Insects may 
evolve resistance to dsRNA through various 
mechanisms, such as mutations in the target 
gene, enhanced degradation of dsRNA, or 
reduced uptake of dsRNA [230,231]. 
 

To mitigate the risk of resistance development, 
several strategies can be employed. One 
approach is to target multiple genes 
simultaneously, either through the use of a single 
dsRNA that targets conserved regions across 
different genes or through the application of 
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multiple dsRNAs targeting distinct genes 
[232,233]. This strategy reduces the likelihood of 
resistance developing, as insects would need to 
evolve resistance to multiple genes concurrently 
[234]. 
 
Another approach is to use RNAi as part of an 
integrated pest management (IPM) program, 
where it is combined with other pest control 
methods, such as biological control, cultural 
practices, and selective use of insecticides [235]. 
By using multiple control strategies, the selection 
pressure on the target pest is reduced, 
decreasing the risk of resistance development 
[236]. 
 
Monitoring and early detection of resistance 
development are also crucial for the successful 
implementation of RNAi-based pest management 
[237]. Regular surveillance of target pest 
populations and assessment of their 
susceptibility to RNAi can help identify potential 
resistance issues early on [238]. This information 
can guide the adaptation of RNAi-based 
strategies, such as rotating target genes or 
adjusting the frequency and timing of dsRNA 
applications, to maintain their effectiveness over 
time [239]. 
 

7. ENVIRONMENTAL AND ECOLOGICAL 
CONSIDERATIONS 

 
The use of RNAi-based strategies for insect pest 
management raises important environmental and 
ecological considerations that need to be 
addressed to ensure their safe and sustainable 
application [240]. These considerations include 
the potential impact on non-target organisms, the 
fate of dsRNA in the environment, and the need 
for appropriate risk assessment and regulation 
[241]. 
 

7.1 Impact on Non-Target Organisms 
 
One of the main environmental concerns 
associated with RNAi-based pest control is the 
potential impact on non-target organisms [242]. 
While RNAi is generally considered to be a highly 
specific approach, there is a risk that dsRNA 
intended to silence genes in the target pest may 
also affect closely related species or other 
organisms that share sequence similarities [243]. 
 

Studies have shown that the ingestion of dsRNA 
by non-target organisms, such as beneficial 
insects, pollinators, and soil microorganisms, can 
lead to gene silencing and adverse effects on 

their fitness and survival [244,245]. For example, 
the ingestion of dsRNA targeting the V-ATPase 
gene of the western corn rootworm by the 
ladybird beetle (Coleomegilla maculata), a non-
target organism, resulted in reduced fertility and 
survival [246]. 
 

7.2 Fate of dsRNA in the Environment 
 
Another important consideration is the fate of 
dsRNA in the environment, including its 
persistence, degradation, and potential for 
horizontal transfer [250]. When dsRNA is 
introduced into the environment through 
transgenic plants or dsRNA-containing sprays, it 
can persist in the soil, water, and plant tissues 
[251]. 
 
The persistence of dsRNA in the environment 
raises concerns about its potential long-term 
effects on non-target organisms and the 
possibility of horizontal gene transfer to other 
species [252]. Studies have shown that dsRNA 
can be detected in the soil and water for 
extended periods after application, and it can be 
taken up by non-target plants and soil 
microorganisms [253]. 
 
To address these concerns, it is important to 
understand the factors that influence the 
persistence and degradation of dsRNA in the 
environment, such as soil type, temperature, and 
microbial activity [236]. Additionally, the 
development of biodegradable dsRNA 
formulations and delivery systems that minimize 
the persistence of dsRNA in the environment can 
help mitigate potential risks [240]. 
 

7.3 Risk Assessment and Regulation 
 
Given the potential environmental and ecological 
impacts of RNAi-based pest control, appropriate 
risk assessment and regulation are essential to 
ensure its safe and responsible use [241]. 
Regulatory frameworks need to be established to 
evaluate the risks and benefits of RNAi-based 
technologies and to guide their development and 
application [251]. 
 
Risk assessment should consider the potential 
effects of RNAi-based pest control on non-target 
organisms, the fate of dsRNA in the  
environment, and the likelihood of resistance 
development in target pests [247,248,249]. This 
requires a comprehensive understanding of the 
molecular mechanisms of RNAi, the ecology of 
the target pest and its interactions with other 



 
 
 
 

Hasan et al.; J. Exp. Agric. Int., vol. 46, no. 6, pp. 833-863, 2024; Article no.JEAI.117089 
 
 

 
846 

 

species, and the environmental factors that 
influence the effectiveness and persistence of 
dsRNA [235]. 
 
Regulatory oversight should ensure that RNAi-
based pest control products are thoroughly 
tested for their safety and efficacy before they 
are released into the environment [261]. This 
may involve the establishment of standardized 
testing protocols, the setting of appropriate 
thresholds for non-target effects, and the 
implementation of post-release monitoring and 
surveillance programs [230]. 
 
Effective communication and engagement with 
stakeholders, including farmers, environmental 
organizations, and the general public, are also 
crucial for the successful adoption and regulation 
of RNAi-based pest control [250]. Transparency 
about the potential risks and benefits of these 
technologies, as well as the measures taken to 
mitigate any adverse effects, can help build 
public trust and support for their responsible use 
[264]. 

 
8. CONCLUSION AND FUTURE 

PERSPECTIVES 
 
RNAi-based strategies hold great promise for 
revolutionizing insect pest management and 
contributing to the development of sustainable 
and resilient agricultural systems. By harnessing 
the power of gene silencing, these approaches 
can provide targeted and eco-friendly solutions to 
the complex challenges posed by insect pests. 
With continued research, innovation, and 
responsible implementation, RNAi-based pest 
control can play a vital role in ensuring food 
security and environmental sustainability for 
future generations. 
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