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ABSTRACT 
 

The effect of quantum mechanical corrections in semiconductor plasma has been analytically 
investigated through amplitude modulational instability in unmagnetized piezoelectric 
semiconductor crystals. In a semiconducting crystal, each energy level can be occupied at most by 
two electrons owing to the spatial overlap of the wave functions. The Fermi-Dirac distribution rather 
than Maxwell-Boltzmann distribution functions describe the occupation of the energy level of 
electrons and incorporate the new quantum forces associated with the quantum Bohm potentials. 
In this paper, our main aim was to explore the modification in the modulational characteristics of 
semiconductor plasmas using the QHD model. The results show significant changes in the 
amplitude modulational characteristics due to the quantum mechanical effects, highlighting the 
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importance of considering quantum hydrodynamic models in semiconductor plasma studies. This 
research provides valuable insights for understanding the behavior of n-type InSb crystals under 
laser illumination at low temperatures. The numerical estimates are made for n-type InSb crystal at 

77 K duly shone by pulsed 10.6
m

 CO2 laser. 
 

 

Keywords: Quantum plasma; laser-plasma interaction; modulational instability. 
 

1. INTRODUCTION  
 
“The field of modulational amplification can be 
traced from early experiments in communications 
between satellites, where a modulational signal 
is impressed on the optical beam using an 
electro-optic modulator” [1]. Nowadays, the 
maximum bandwidth that can be achieved is 
limited to hundreds of MHz by commercially 
available external phase or intensity modulators 
[2–3]. The use of nonlinear optics' theoretical and 
experimental tools has sparked a resurgence                  
of interest and increased activity in the field [4-5]. 
The ability to achieve higher bandwidths in 
modulational amplification is crucial for high-
speed data transmission and advanced optical 
communication systems. Researchers are 
actively exploring new techniques and materials 
to overcome the limitations of current       
modulators and push the boundaries of 
achievable bandwidths even further. The majority 
of this interest stems from possible uses in 
mode-locking, optical beam deflection, and Q-
switching of lasers to produce giant                             
optical pulses [6]. Sound waves' ability to                  
diffract light was first proposed by Brillouin in 
1922 [7] and experimentally verified in 1932              
[8]. 
 
“A sound wave consists of a sinusoidal 
perturbation of the density of the material or 
strain that travels at the sound velocity. The 
sound wave causes a propagating modulation of 
the medium's refractive index. This modulation 
interacts with the fields of incident and diffracted 
beams, resulting in additional electric polarization 
of the medium and power exchange between the 
incident and diffracted beams. The phenomenon 
of modulational instability in a semiconducting 
medium can be described using electric 
polarization equations, which are cubic functions 
of the electric field amplitude. The third-order 
nonlinear optical susceptibility is a complex 
quantity that can describe the interaction of 
various resonant and nonresonant processes” 
[9]. “The third-order susceptibility tensor is a 
useful tool for explaining modulation in a Kerr 
active medium” [10]. It provides a mathematical 
framework for understanding how the medium 

responds to intense light fields, leading to effects 
such as self-focusing and self-phase modulation.  
 
“In semiconducting crystals, each energy level 
can accommodate a maximum of two electrons 
due to the spatial overlap of wave functions and 
adherence to the Pauli exclusion principle. This 
limitation on the number of electrons per energy 
level is crucial for understanding the behavior of 
semiconductors in electronic devices, as it 
determines their conductivity and optical 
properties. The distribution of electrons follows 
the Fermi-Dirac distribution, which reflects 
quantum concepts and the statistical behavior of 
fermions at various energy states. The concept 
of electron gas in a metal or highly dense 
semiconductor is the most obvious example in 
which both plasma and quantum mechanical 
effects work concurrently. There has been an 
increasing interest in quantum mechanical 
effects in semiconductors, motivated by 
applications in ultrasmall electron devices and in 
laser-plasma interactions” [11,12].  
 
In highly dense plasmas, new quantum forces, 
the quantum Bohm potential, and Fermi pressure 
are associated with the Fermi-Dirac distribution 
functions. These forces significantly alter the 
collective behavior of dense quantum plasmas. It 
is well known [13] that “in quantum plasmas, the 
de Broglie wavelength of the majority of charge 
carriers is comparable to the dimension of the 
plasma. This leads to the manifestation of 
quantum effects on a macroscopic scale, 
impacting the overall dynamics and properties of 
the plasma. Understanding these quantum 
phenomena is crucial for advancing various 
technological applications and fundamental 
research in plasma physics”.  
 
“Many authors have theoretically investigated the 
amplitude modulational instability of propagating 
beams because of its enormous technological 
potential” [14–18]. “The present authors 
performed research into the impact of quantum 
effects on the parametric amplification properties 
of semiconductor plasmas” [19]. “To the best of 
the authors' knowledge, no attempt has been 
made to study modulational characteristics in 
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quantum semiconductor plasmas. Therefore, this 
study aims to fill this gap by analyzing the 
amplitude modulational instability in 
semiconductor plasmas considering quantum 
effects. The modification in the modulational 
characteristics of unmagnetised semiconductor 
plasmas as a result of the quantum correction, 
the authors hereby used the quantum 
hydrodynamic model developed by Manfredi, 
Haas, and others” [20-23] to simulate the main 
characteristics of quantum mechanical effects. 
 
Thus, in the present paper, we have obtained the 
third-order nonlinear susceptibility leading to the 
growth of the modulated waves and the threshold 
field required to incite the transverse amplitude 
modulation instability process with the influence 
of the quantum effect as presented in Section 2. 
Moreover, the study also investigates the impact 
of quantum corrections on the growth rate and 
stability of modulated waves in unmagnetised n-
InSb semiconductor crystals. Section 3 deals 
with the numerical estimations of the growth rate 
of the modulated signal wave influenced by the 
external parameters. The n-InSb semiconductor 
crystals used in these analyses were properly 
illuminated by a CO2 laser. 
 

2. THEORETICAL FORMULATION 
 
To explore the amplitude modulation interaction 
and the amplification of modulated waves in a 
highly doped unmagnetized piezoelectric 
semiconductor, the study considers a 
homogeneous semiconductor plasma of infinite 
extent. This analysis focuses on the effects of 
nonlinear optical third-order susceptibility, which 
plays a key role in the observed phenomena. 
The classical hydrodynamic model of 

homogeneous semiconductor plasma of infinite 
extent (i.e. kl<<1, k being the wave number of 
the acoustic wave and l the mean free path of the 
electron) has been extended to include the 
necessary quantum mechanical corrections 
resulting in a component quantum plasma 
described by the following QHD model. The 

spatially uniform (wave vector 
00 k

) pump 

electric field 
( )tiE

00
exp −

 is applied parallel to 

the wave vector k


 along the x-axis.   
 
The de Broglie wavelength of the charge carriers 
can be comparable to the system's dimension 
when plasma is cooled to an exceptionally low 
temperature. In these circumstances, ultracold 
plasma behaves similarly to Fermi gas, and it is 
anticipated that quantum mechanical effects will 
be crucial in determining how charged particles 
behave. The most obvious instance of both 
plasma and quantum effects operating 
simultaneously is the electron gas in a metal or 
semimetal. On the other hand, statistical 
mechanics becomes crucial when the 
temperature falls below the Fermi temperature 
TF, the quantum effect becomes more 
significant, and the relevant statistical distribution 
shifts from Maxwell-Boltzmann to Fermi-Dirac 
[24]. The QHD model used for one-component 
quantum plasma here includes the quantum 
pressure term and quantum Bohm potential. 
Quantum statistics is included in the model 
through the equation of state, which considers 
the Fermionic character of the electrons. The 
basic equations following Guha et. al. [25] and 
Manfredi [26] are as follows. 
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P

 is the Fermi pressure with 


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


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FB
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 as the Fermi speed in which

BK
 is the Boltzmann constant and F

T
is the 

Fermi temperature. 0
n

 and 1
n

 are equilibrium 

and perturbed carrier densities, respectively.   

is the mass density of the crystal, u is the 

displacement of the lattice, C  is the elastic 

constant, and s


is the electrostriction coefficient 
of the crystal. First and second                               
equations. explain the equations of motion for        
the carriers with zeroth and first-order                

oscillatory        fluid velocities ( 10
,

) of carriers 

with an effective mass m and charge e . The 
quantum  mechanical effects which are known as 

the Bohm potential is represented by the 

dependent term in Eq. (2). The Bohm                        
potential is accountable for tunneling and 
differential resistivity in semiconductor                     

physics.   is the phenomenological                      
electron collision frequency. The space charge 

field 1
E

is determined by the Poisson eq. (4) 

where   is the dielectric constant of the 
semiconductor.  
 
In this process, an acoustic perturbation formed 
in the medium under the influence of a strong 
pump field gives rise to an electron density 
perturbation at the acoustic frequency, which 
combines nonlinearity with the pump wave and 
drives the acoustic wave at modulated 
frequencies. Following, Guha et al. [25] and 
using Eqs. (1) - (6) in the collision- dominated 

regime ( 0
 k

) we obtain,  
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Where 
 men

p

2

0
=

is the plasma frequency and the Doppler shift has been ignored here under 

the assumption ( 00
 k

).   
 

The density perturbation associated with phonon mode s
n

is assumed to vary as 
)](exp[ txki

ss
−

with angular frequency s


, and wave number s
k

. The initial laser beam thus oscillates with this 

density perturbation to produce enforced wave disturbance at the upper s
 +

0 and lower s
 −

0

sideband frequencies [27]. This modulation process under consideration must fulfill the phase-

matching conditions, s
kkk =

10 , s
 =

10 known as the momentum and energy conservation 
relations.  

Here, we have taken into consideration only the resonant sideband frequencies ( s
 

0 ) (by 
considering the crystal to be of infinite extent) and higher-order scattering terms, being off-resonant, 
are neglected [28]. Using eq. (7) the density perturbations oscillating at the forced wave frequencies, 
i.e. upper and lower sideband frequencies may be expressed as. 
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where 0
 +=

+ s  and 0
 −=

− s   
 
when deriving Eqs. (8), it has been considered 

that the sideband waves 
),(

1 
kn 

vary as 

)](exp[ xkti


−
. Equation (8) shows that the 

sideband waves are coupled to the acoustic 
mode via density perturbation produced by a 
strong pump field. 

 
It is also evident from the above expression that 

),(
1 

kn 
depends upon the magnitude of the 

pump intensity. The density perturbations 
resulting at the sideband frequencies                      
affected the amplification and dispersion 
characteristics of the generated waves. The 
effect of the transition dipole moment has been 
neglected to study the contribution of nonlinear 
current density on the induced polarization of the 
medium.  
 
The induced nonlinear current densities for the 
upper and lower sidebands are given by 
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The total effective nonlinear polarization of the 
modulated wave is obtained as 
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To initiate modulational amplification in the medium, the pump amplitude must exceed a certain 

threshold value th
E

,0 to supply the minimum amount of energy to the medium.To determine the 
threshold value of the pump amplitude required for the onset of the modulational amplification, we set 

0=
eff

P
and obtain, 
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Eq. (13) shows that the transverse modulational instability of the signal wave has a nonzero intensity 

threshold, which is influenced by the quantum effect through the term 
( )

p
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0 . The polarization 

due to modulated frequencies ( 


) is defined as  
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From Eqs. (12) and (14), We may obtain effective third-order nonlinear susceptibility, which includes 
quantum mechanical effects as 
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The effective third-order nonlinear susceptibility is influenced by the quantum mechanical correction 

through
( )

p
 −=

0 . The above formulation reveals that the third-order optical susceptibility is also 

influenced by the carrier concentration through 
0

p
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. Rationalization of Eq. (15) gives the real and 
imaginary parts of the effective third-order optical susceptibility as  
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By using the real part of effective third-order optical susceptibility, one can study the modulated 
wave's dispersion characteristics. It can be identified from equation (16) that there is an intensity-

dependent refractive index 
  )3(

Re
eff


leading to the possibility of focusing or defocusing the 

propagating beam. However, for nondispersive mode, i.e. for ss k =
, we observe an anomalous 

dispersion characteristic of the medium.  
 

The gain characteristics of the modulational instability process can be obtained by eq. (17) using the 
imaginary part of effective third-order optical susceptibility. In order to study the possibility of 
modulational amplification in a semiconductor, we employ the relation  
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where eff
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is the effective nonlinear absorption coefficient of third order. The nonlinear steady-state 

growth of the modulated signal is possible only if eff


, obtainable from Eq. (18) is negative.  
 

Thus, Equations (17) and (18) provide the growth rate of the modulated beam for pump amplitudes 
significantly above the threshold electric field as 
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 It has been seen that both amplification as well as dispersion characteristics of modulational 

instability are effectively modified by quantum effect through
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3. RESULTS AND DISCUSSION 
 
Analytical investigations for amplitude 
modulational instability and the resultant 
amplification of modulated waves produced from 
the pump wave to the modulated wave are dealt 
with in the present section. The study focuses on 
understanding the conditions under which this 
instability occurs and how it affects the overall 
behavior of the system. The analytical outcomes 
obtained are applied to a centrosymmetric 
semiconductor such as n-InSb at 77 K irradiated 
by a pulsed 10.6µm CO2 laser. The physical 

constants involved ar
8.15
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054.0=
Cm-2.  

 

Fig. 1 shows that the threshold field th
E

,0  
continuously decreases with increasing wave 
number k in the absence of quantum effect. From 
the Eq. (13) for threshold electric field, it may be 

seen that k is present in the denominator as well 
as in the quantum correction term  

( )
p −= 0  through p

=(

'22

Fp
Vk+

). 

Therefore, the resonance between p
and 0



will also affect threshold characteristics with the 
quantum effect.  
 

Hence curve a makes clear, initially for small k  

values when 0 p , 
( )

QEthE0
 decreases 

with k. At 
18

1056.1
−

= mk , 0 p condition 

is achieved resulting into a minimum QEothE )(

14
104.5

−
 Vm  in the characteristics. Now 

increasing k , p
becomes greater than 0


and 

this makes linear increment in the threshold 
value with k in the presence of quantum term. It 
may also be implied from this figure that the 

magnitude thE0 is always greater than that of

QEthE )( 0 . As a result, it is possible to interpret 
that quantum effects play a significant role in 

reducing the threshold electric field 
( )

QEthE0

which is important for the fabrication of any 
nonlinear device.  

 
The dependence of the gain coefficient (with and 

without quantum effect) with pump field 0
E

is 
shown in Fig. 2. In both cases, the gain 
coefficient decreases as the pump's electric field 
increases. It is found that the gain coefficient is 
strongly affected by the quantum correction. It 
increases the magnitude of the gain coefficient 
as evident from curve a. This demonstrates the 
importance of considering quantum effects when 
analyzing the behavior of the gain coefficient in 
these systems.  

 
 

Fig. 1. Variation of threshold electric field th
E

,0  (with quantum effect (curve - a) and without 
quantum effect (curve-b) of quantum effect) with wave number k. 
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Fig. 2. Variation of gain coefficient g (with quantum effect (curve – a) and without quantum 

effect (curve – b) of quantum effect) with pump electric field 0
E

. 
 

 
 

Fig. 3. Variation of gain coefficient g (with quantum effect (curve - a) and without quantum 
effect (curve -b) of quantum effect) with wave number k. 

 

 
 

Fig. 4. Variation of gain coefficient g (with quantum effect (curve - a) and without quantum 

effect (curve - b)) with number density 0n
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Fig. 3 illustrates the variation of gain coefficient 
(with quantum effect and without quantum effect) 
with wave number k. The presence of the 
quantum effect is found to be favorable in 
achieving a higher gain. In both cases, gain 
coefficient decays parabolically with increasing k 
value, becoming nearly independent of k as 
wave number increases. 

 
Fig. 4 shows the variation of gain coefficient with 

free carrier density 0n . Again, a close look at the 
Eq. (17) reveals the critical dependence of gain 

coefficient on 0
n

via 















−= p

_

0 

term. In the 

low doping regime where 
p 

0 , the value of 
 is positive and consequently gain decreases 

with 0
n

. As we increase doping concentration the 
value of plasma frequency increases. At a 

particular doping concentration p
resonates 

with 0 . At this resonance condition 
p 

0  

when 
324

0
103.1

−
= mn

in the presence of 

quantum correction and 
324

0
102.2

−
= mn

without quantum terms, modulational gain 
achieve the minimum value. It is also implied 
from this figure that the quantum correction shifts 
the minimum toward a lower number density 
value. a little away from this juncture results in















−= p

_

0 

negative and eventually the gain 
increases with doping concentration. “Both 
curves exhibit identical qualitative behavior. 
Carrier densities of this magnitude are highly 
relevant to III-V semiconductors and have been 
extensively studied by several researchers”             
[29-30]. These high carrier densities can 
significantly impact the electronic properties of 
the material, leading to unique quantum effects 
and potential applications in high-speed 
electronics and optoelectronics. 

 
However, the doping should not exceed the limit 

for which the plasma frequency p


exceeds the 

input pump frequency 0 , because in the regime 

when 0
 

p the electromagnetic pump wave 
will be reflected by the intervening medium. It 
may be thereby implied that moderately doped 

semiconductors are the most suitable hosts for 
the amplitude modulational instability process. 
It has been found that the magnitude of the 
threshold electric field for the onset of 

modulational amplification is 
14

104.5
−

 Vm (with 

quantum effect) and 
16

109.4
−

 Vm (without 
quantum effect) and the respective excitation 

intensities are 
29

106.2
−

 Wm to
211

102.1
−

 Wm

. Such pump intensities are easily obtainable by 
using frequency-doubled CW and pulsed 10.6 
µm CO2 laser. The capability to achieve these 
excitation intensities with commonly used lasers 
renders the phenomenon of modulational 
amplification accessible for experimental 
investigation, with modulational processes 
potentially being easily excited in moderately 
doped piezoelectric semiconductors even at 
lower pump intensities. 
 

4. CONCLUSION 
 
Based on the above discussions, the 
following conclusions may be drawn: 
 

1. The quantum effect in the electron 
dynamics of the semiconductor plasma 
significantly increases the gain coefficient 
of modulational amplification in moderately 
doped semiconductors. This enhancement 
in gain coefficient allows for more efficient 
amplification of signals in these materials, 
making them ideal for applications 
requiring high amplification.  

2. The inclusion of quantum effects in 
modulational processes opens new 
possibilities for improving signal 
amplification in semiconductor devices. 
Quantum effects, particularly through the 
quantum Bohm potential, significantly 
influence modulational instability and have 
a substantial impact on the modulational 
instability characteristics in n-type InSb 
semiconductor plasmas. These quantum 
effects alter the amplitude and stability of 
wave modulations, emphasizing the need 
to incorporate quantum considerations in 
analysing semiconductor plasmas. 

3. The QHD model is crucial for accurate 
prediction in laser-illuminated 
environments. The model reveals 
modifications in the modulational stability 
and amplitude due to quantum effects, 
offering an essential framework for more 
accurate predictions in applications 
involving semiconductor crystals exposed 
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to laser fields, particularly at low 
temperatures. 
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