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Neurofeedback (NFB) training with brain-computer interfaces (BCIs) is currently being
studied in a variety of neurological and neuropsychiatric conditions in an aim to reduce
disorder-specific symptoms. For this purpose, a range of classification algorithms has been
explored to identify different brain states. These neural states, e.g., self-regulated brain
activity vs. rest, are separated by setting a threshold parameter. Measures such as the
maximum classification accuracy (CA) have been introduced to evaluate the performance
of these algorithms. Interestingly enough, precisely these measures are often used to
estimate the subject’s ability to perform brain self-regulation. This is surprising, given
that the goal of improving the tool that differentiates between brain states is different
from the aim of optimizing NFB for the subject performing brain self-regulation. For the
latter, knowledge about mental resources and work load is essential in order to adapt the
difficulty of the intervention accordingly. In this context, we apply an analytical method and
provide empirical data to determine the zone of proximal development (ZPD) as a measure
of a subject’s cognitive resources and the instructional efficacy of NFB. This approach is
based on a reconsideration of item-response theory (IRT) and cognitive load theory for
instructional design, and combines them with the CA curve to provide a measure of BCI
performance.

Keywords: neurofeedback, cognitive load theory, zone of proximal development, workload, instructional design,
brain-computer interface

INTRODUCTION
Brain-computer interfaces (BCIs) support reinforcement learning
of brain self-regulation by feedback and reward. While assistive
BCIs aim to replace lost functions by controlling external
devices (Yanagisawa et al., 2011; Hochberg et al., 2012; Collinger
et al., 2013; Wang et al., 2013), the ultimate goal of restorative
or therapeutic approaches is to improve specific functions by
neurofeedback (NFB) training, e.g., hand and arm control
following a stroke (Ang et al., 2010; Shindo et al., 2011;
Buch et al., 2012; Ramos-Murguialday et al., 2013; Gharabaghi
et al., 2014a,b). The fundamental approach of NFB is based
on the idea that physiological signals during restful waking
(Mantini et al., 2007; Albert et al., 2009; De Vico Fallani
et al., 2011) are contrasted to the signals during the task
condition, using classification algorithms to weight the respective
features (Theodoridis and Koutroumbas, 2009). In this regard,
restorative BCI is similar to assistive BCI. However, unlike
assistive BCI approaches, which select features on the basis of
their ability to maximally contrast the two states, the feature
space for restorative BCI and NFB training is constrained
in accordance with the specific treatment rationale. In stroke
rehabilitation, for example, the feature space might be restricted

to power in the β-range (15–30 Hz), since decreased movement-
related desynchronization in this frequency range is related to
the amount of motor impairment after the insult (Rossiter
et al., 2014). During restorative BCI training, the power of
the frequency band is therefore estimated, and the desired
modulation of this feature space is reinforced using appropriate
visual, auditory or haptic feedback (Gharabaghi et al., 2014a,b).
The feature weights are deliberately constrained during these
interventions and the modality of feedback is designed to
maximize the reinforcing effect of NFB (Sherlin et al., 2011;
Vukelić et al., 2014). By contrast, during assistive BCI, the
feature weights are calculated so as to allow maximal separation
(Blankertz et al., 2008; Theodoridis and Koutroumbas, 2009)
and the classification output is used for communication or
robotic control (Wolpaw et al., 2002). While the primary goal
for assistive BCI is accuracy and speed, the main goal for
restorative BCI is reinforcement and learning. A theoretical
difference therefore exists between the self-regulation of brain
activity and the classification algorithm (Wood et al., 2014).
However, although there are several ways of measuring the
performance of an assistive BCI (Thomas et al., 2013; Thompson
et al., 2013), similar appropriate measures for restorative BCI
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and NFB are currently not available. The most common
measure for BCI is classification accuracy (CA). While the
magnitude of CA has been used to estimate subject’s ability to
perform brain self-regulation, this interpretation currently lacks
theoretical foundation (Blankertz et al., 2010; Buch et al., 2012;
Hammer et al., 2012). What is more, there is no consensus
regarding what approaches are appropriate for disentangling
the performance of subject and classifier from each other, nor
is there any theory as to how they are connected with each
other.

By integrating classification theory (Theodoridis and
Koutroumbas, 2009) with item response theory (Safrit et al.,
1989), we describe how the relationship between the classification
algorithm and the ability for self-regulation can be understood.
In addition, on the basis of the theory of cognitive load for
instructional design (Sweller, 1994; Schnotz and Kürschner,
2007), we will describe how the CA can be interpreted within
the framework of NFB training. Our argument is based on
the fact that it is possible to make an off-line calculation of
the positive rates for different classifiers and thresholds. We
will argue that the true positive and the false positive curve
provide information about the subject’s ability and his/her
performance when support is provided. Moreover, since the
shape of CA depends on the difference between true and false
positive rate (FPR), we propose that it contains information
about the subject’s zone of proximal development (ZPD).
Therefore, on the basis of the theory of cognitive learning, the
ZPD may serve as an indirect measure of the subject’s cognitive
resources (Allal and Ducrey, 2000; Schnotz and Kürschner,
2007).

In this respect, the goal of this paper is to provide a
measurement theory for subjects’ abilities and ZPD during NFB
training. We support this theory by mathematical models and by
evidence from empirical data.

EMPIRICAL DATASET
Exemplary data is based on two right-handed, healthy subjects,
one female (age 19) and one male (age 31), who presented
different abilities for brain self-regulation. They each performed
75 trials of cued motor imagery. The trial structure consisted
of consecutive preparatory (2 s), motor imagery (6 s) and
rest (6 s) phases, each of which was initiated by a specific
auditory cue. Electroencephalography (EEG) was recorded at
64 channels in accordance with the 10–20 system with Brain
Products amplifiers and analyzed offline with custom-written
scripts and Fieldtrip in Matlab (Oostenveld et al., 2011) according
to the following steps. Data was down-sampled to 200 Hz and
band-pass filtered between 14 and 26 Hz using a Butterworth
filter. Wavelet transformation was used to perform a time-
frequency analysis for time steps of 50 ms for the power
in the β-range (15–25 Hz) over sensorimotor regions (FC3,
C3 and CP3). For each trial, the power at each time point
was normalized by z-scoring based on the mean and standard
deviation of the power distribution in the rest and preparatory
phase. Both subjects gave written, informed consent prior to
participation. The study was approved by the local ethics
committee.

LINKING SUBJECT’S ABILITY FOR BRAIN SELF-REGULATION
WITH THE CLASSIFICATION PERFORMANCE
In the following section, we will propose a link between the ability
for brain self-regulation, as estimated by the item function, with
the classifier performance, as estimated by the rate function. This
integration will enable us to apply off-line analysis of the positive
rate across different thresholds to determine the subjects’ ability
for brain self-regulation.

RATE FUNCTIONS
When applying NFB for therapeutic purposes, a two-class
separation of brain states is usually performed, i.e., rest vs.
learned self-regulation of brain activity. Due to the fact that
most of the classifiers used in NFB are based on supervised
learning algorithms employing linear discriminant analysis, the
sensitivity and specificity of the classifier can be calculated
relatively easily. The sensitivity informs us how often the classifier
detects sufficient self-regulation while the subject is performing
brain self-regulation (true positive rate or TPR). The specificity
informs us how often the classifier detects rest while the subject
is performing insufficient brain self-regulation (true negative rate
or TNR). Since the probabilities of each conditional classification
must add up to 1 within each class, the false negative rate (FNR)
is equal to 1-TPR, and the FPR is equal to 1-TNR. CA is based on
the average of TPR and TNR.

CA =
(TPR+ TNR)

2

THRESHOLD-BASED RATE FUNCTIONS
These rates are functions of the threshold θ (Theodoridis and
Koutroumbas, 2009). During the training, the threshold θ usually
remains fixed, and the rates therefore also remain fixed. However,
provided that the electrophysiological signals have been recorded
and stored, the positive rate can be calculated offline after the
training for any threshold. We exemplify this by the empirical
dataset (see Figure 1): the higher—i.e., the more challenging—
the threshold, the stronger the desynchronization must be if
it is to be classified as positive (see Figure 1A). The examples
also reveal how subjects vary in their ability for brain self-
regulation, e.g., sensorimotor beta-band desynchronization. The
first subject shows stronger desynchronization and is thus able
to reach more challenging thresholds (see Figure 1A) than the
second subject, who has less pronounced brain self-regulation
(see Figure 1C).

In parallel, this data enables us to characterize the classifier
performance: detecting “positive” during the motor imagery
phase (second 0 to 6) is a true positive, whereas “positive”
during the preparatory phase (second −2 to 0) is a false
positive. The average rate of positives for each phase is a suitable
measure for characterizing a classifier’s performance, i.e., true
and FPRs are expressed as probabilities in the range between
0 and 1 (see Figures 1B/D). The first subject has higher TPRs
for all thresholds (see Figure 1B) than the second subject (see
Figure 1D).

For most classifiers, the rate functions result in sigmoidal
rate curves. We show this sigmoidal shape for the TPR
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FIGURE 1 | It shows how sensorimotor beta power values are
transformed into positive rates by threshold. Left subplots show time
course of sensorimotor power in black and different threshold levels in red for

subject #1 (A) and subject #2 (C). The respective rates of false and true
positives for the first (B) and second subject (D) show how rates decrease as
the threshold increases.

of the empirical dataset (see Figure 2A). The higher the
thresholds, the more the probability of success decreases
in a logistic fashion. Accordingly, the location of the first
subject’s true positive curve is further to the right, indicating
a generally higher success rate. However, the shape of the
respective curves for the first and the second subject are highly
similar.

ITEM FUNCTIONS
The rate functions described resemble the item functions used in
the psychometric item-response theory (IRT). In various fields
of research, such as in assessment psychology (De Champlain,
2010) or motor behavior research (Safrit et al., 1989), the
parameters of the item functions are usually estimated across
datasets of several subjects and items. This enables us to
quantify the respective variability of subject’s ability and task
difficulty necessary for fitting algorithms. If, for example a
mathematical test battery is distributed to a school class, the
marginal success rates enable us to estimate the difficulty of

a specific test and the ability of a single subject. Generally
speaking, students with a higher mathematical ability achieve
a higher success rate, and easier tests should result in higher
average success rates. This information about the relative ranks
based on success rates can be used for parameter estimation.
More specifically, the shape of these success curves can be
approximated by a two-parameter logistic model (2PLM) using
the following function (Safrit et al., 1989; De Champlain,
2010):

P =
1

1+ e−D(α−θ)

In this function, e is Euler’s number and D is the slope of
the curve. The parameter θ, generally known as the threshold
parameter in rate functions, now represents the difficulty of the
task. Ability α and difficulty θ are located on the same axis. They
can therefore be measured in one dimension. The location of
the curve depends on the difference between the difficulty of a
task and the subject’s ability α. The shape of the curve depends
on the slope parameter D, and a value of ∼1.7 would result in

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 21 | 3

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Bauer and Gharabaghi Cognitive load and neurofeedback

FIGURE 2 | It shows the numerical results with true positive rate (TPR) (A) and false positive rate (FPR) (B) for both subjects on the basis of the
average across trials.

an approximate fit for a normal distribution (De Champlain,
2010). If the slope is identical for all curves, all item function
are parallel and the difficulty level θ is the only changeable
parameter.

SIMILARITY OF RATE AND ITEM FUNCTIONS
For dichotomous items, the probability of success is modeled
as a function of the difficulty of the item and the ability of
the subject. Assuming that the latter is stable, the difficulty
of an item then depends on the design of the task. The
combination of NFB task, i.e., the classification algorithm, the
trial structure, the cues and any instructions or extraneous aspects
constitute the phrasing of such an item. By way of example:
in NFB training, our aim is to differentiate between sufficient
and insufficient modulation of brain activity. If we were to
use a questionnaire instead of EEG and BCI, we might phrase
an item: “Are you currently performing sufficient brain self-
regulation?” to which the possible answers would be “yes” and
“no”. However, since the decision about “yes” or “no” is based on
physiological recordings during the task, a post hoc reassessment
for different thresholds is possible. This recalculation enables us
to apply virtually the same items over a range of difficulties. In
addition, threshold-based recalculation modifies only one aspect
of the “item”, namely the difficulty parameter; an aspect that
lies in one clearly defined dimension. These properties (uni-
dimensionality, off-line analysis) allow for an interpretation of
the parameters that describe the positive rate curves on the
threshold dimension within the framework of the item response
theory.

INTERPRETATION OF CURVE PARAMETERS
TRUE POSITIVE CURVE REPORTS ON ABILITY
Due to the fact that the measurement of the subject’s ability for
brain self-regulation can be performed post hoc, NFB training is
comparable to an action like videotaping a sports exercise such

as long jump. The data acquired during the task can then be
used later to estimate several aspects of the performance. As in
sports training, the compound ability can be divided into sub-
sets (e.g., sprinting, take-off, and landing in long jump). In this
example, the coach would be ill-advised to reward any jump
independent of the actual performance. Therefore, specificity
matters.

NFB training has the ability to provide this specificity by
selecting the appropriate features and classification algorithms.
In addition to determining the threshold to be passed by the
event-related desynchronisation (ERD), additional features might
include the speed of the power dip in the first two seconds or
continuity of desynchronization. This highlights the fact that the
reinforced features must be carefully selected for their respective
clinical or rehabilitative purpose.

In this respect, it is also important to note that functional
improvement is a combination of several abilities and
preconditions, of which for instance, brain self-regulation of
sensorimotor beta-rhythms is only one example. Others, such
as reaching out and holding a certain position with the upper
limb, as assessed in the Fugl-Meyer assessment (Deakin et al.,
2003), or interacting with an object, as assessed in the Broetz
hand assessment (Brötz et al., 2014), necessitate the involvement
of parieto-frontal circuits for motor planning (Andersen and
Cui, 2009) and sensorimotor circuits for execution (Chouinard
and Paus, 2006). Along these lines, stroke survivors who train
to modulate the activity of the primary motor cortex (Kaiser
et al., 2011; Kilavik et al., 2012) show improvements in this
ability only if the fronto-parietal integrity is preserved (Buch
et al., 2012). Training such ability of brain-self-regulation
may therefore be related both directly and indirectly to the
respective function, e.g., moving the upper extremity. However,
improving brain self-regulation does not necessarily lead to
functional improvements, since these may also depend on
abilities and preconditions that are not influenced by the NFB
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training. Improvements are therefore required with regard to the
clinical efficacy of such a training (Ramos-Murguialday et al.,
2013; Ang et al., 2014) by researching the feedback modality
(Gomez-Rodriguez et al., 2011) or using it in combination
with simultaneous cortical stimulation (Gharabaghi et al.,
2014a). Screening examinations might also be necessary to
determine the eligibility of subjects for a specific intervention
(Stinear et al., 2012; Burke Quinlan et al., 2014; Vukelić et al.,
2014). In addition, the validity of functional assessment scores
requires re-evaluation in the light of biomarkers of sub-clinical
improvement.

We therefore conclude that the location of the TPR can
be interpreted as a subject’s ability for brain self-regulation,
regardless of the potential influence of this ability on a specific
function. In this respect, the location of the true positive curve—
mathematically speaking, the point of maximal slope and halfway
between success and failure—provides information about the
subject’s ability to perform the task which is defined by the
features and the classifier.

FALSE POSITIVE CURVE REPORTS ON ATTEMPT
According to our previous example, a long jump coach would be
ill-advised not to reward any jump. To be more precise, for reasons
of motivation, even attempts should sometimes be rewarded, or
support is required to transform an attempt into a success. In the
case of NFB, specificity and sensitivity also have to be balanced
according to their importance for learning. If the task remains
identical, such a balance can only be achieved by changing the
threshold. Decreasing the threshold increases the number of false
positives (see Figure 2B). Since the classifier normalizes to rest,
there is no apparent difference in the location of the FPR between
the two subjects (see Figure 2B). This indicates that the subjects
have the same opportunity to try to perform the task. This theory
is supported by the following line of argument. In this context,
“support” or “help” can be formalized by assuming that the
subject with the current level of ability α is unable to perform the
task at the given level of difficulty θ, whereas providing help will
lead to success. If we then detect a success, this will be a “false
positive” result, since the subject’s current ability is too low for
him/her to actually succeed. If no help is provided, the success
achieved will be a “true positive” result. This approach will lead to
a range of thresholds which are defined by two limits. The lower
limit will be marked by the most difficult task that the subject can
perform when help is provided. The upper limit is defined by the
most difficult task that can be performed by the subject without
help (see Figure 3A). Once the subject no longer benefits from
help, e.g., due to overly high intrinsic or extrinsic load, he can no
longer benefit from the training.

SHAPE OF CLASSIFICATION ACCURACY SHEDS LIGHT ON THE ZONE OF
PROXIMAL DEVELOPMENT
The range between the most difficult tasks that can be achieved
by the subject with and without help, respectively, can be defined
as the ZPD. Cognitive load theory argues that mental load can
be divided into three categories: intrinsic load, extrinsic load and
germane load (Jong, 2009). Intrinsic load resembles the difficulty
of the task and is mainly caused by the element interactivity of the

task. Extraneous load is mainly caused by irrelevant information.
Germane load is caused by the construction and subsequent
automation of schemas, i.e., learning. Lower difficulty results in a
reduction of intrinsic load while extrinsic load will increase, since
the instructional material now contains irrelevant information. If
a task is too easy (i.e., θ � α) or too difficult (i.e., θ � α) for a
given ability, the extrinsic or the intrinsic load of the task would
be too high.

For every given level of difficulty and ability for a task,
there is therefore a ZPD, where learning is possible (Schnotz
and Kürschner, 2007). The cognitive load theory thus provides
a feasible explanation as to why the boundaries of ZPD are
characterized by TPR and FPR (Allal and Ducrey, 2000; see
Figure 3B). A second line of argumentation considers the
likelihood of reward. Since a subject cannot discern a reward
with identical qualities, the only way of differentiating between
a true and a false reward is to determine the relative probability
of their occurrence. The difference between the true and FPR
might therefore be a good approximation of the difference with
respect to the informational content of the two reward rates.
Although more elaborate measures might be better suited to this
divergence (MacKay, 2003), the most straightforward approach
would consider the magnitude and the shape of ZPD as estimated
by a linear transformation of CA in accordance with the following
equations:

CA =
TPR+ TNR

2
ZPD = TPR− FPR

TNR = 1− FPR

CA =
TPR+ (1− FPR)

2
=

TPR− FPR+ 1

2
(2 ∗ CA)− 1 = TPR− FPR

ZPD = (2 ∗ CA)− 1

CONCLUSION AND OUTLOOK
In the sections above, we have shown how the true and false
positives rates of brain self-regulation can be interpreted within
the framework of NFB. We have demonstrated that there is
a natural relationship between classification of rate functions
and item response functions. We have revealed the connection
between applying a threshold to ERD signals and estimating the
ability to perform ERD. In this respect, the true positive curve
provides information as to the brain’s ability to perform brain
self-regulation in a NFB task. In addition, we showed that not only
can the false positive curve provide information about attempts
to perform the task but it can also set the lower limit of the
ZPD. Below, we will illustrate how the ZPD, in its capacity as
a transformation of CA, can support the instructional design of
NFB interventions.

CONCLUSION REGARDING CLASSIFICATION ACCURACY
The ZPD can be used to compare different classification
algorithms. In BCI approaches, classification algorithms are often
trained to maximize CA. This can result in a peaky but narrow
ZPD (see Figure 4A) instead of a flat but broad ZPD (see
Figure 4B), although the area of ZPD is equal in both cases. A
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FIGURE 3 | It illustrates the concept of ZPD. (A) shows the dependance of
the location of the ZPD from the absolute difficulty and the absolute ability.
The ZPD width is based on the between the true and false positive rate. The
blue line indicates the success rate of the task when performed without help

(true positive rate) and the red line indicates the success rate due to help
(false positive rate). The dotted black line indicates the equality of difficulty
and ability. The area of ZPD is shown in gray. (B) shows the ZPD based on
FPR and TPR over different thresholds for the first subject.

more broadly shaped ZPD indicates that learning can occur over
a larger range of thresholds, whereas a peaky shape means that
maximal help is available only for a narrow range of thresholds.
This being the case, slight misalignments might have significant
adverse effects. The shape of CA may therefore serve as a measure
to evaluate whether or not a NFB task is instructionally effective.
While the best general instructional efficacy is obviously achieved
by NFB training with a high and broad ZPD, interpreting the
shape enables us to apply tailored approaches. These might be
more effective with regard to instructional needs for specific
subjects and environments. A broad ZPD might be more robust
for home-based training with low availability of supervision and
the possibility of noisy measurements. A peaky ZPD might be
more suitable for environments where professionals can perform
alignments, i.e., adapt the classification algorithm or correct noisy
measurements. Shaping the ZPD can thus support instructional
design of NFB interventions. The approach presented here
will also be applicable to classification algorithms resulting in
non-normal distributions where TPR and TNR are calculated
numerically (see Figure 3B), since the interpretation is also
supported by non-parametric IRT-models provided that TPR and
FPR are monotonic functions (Mokken and Lewis, 1982; Rost,
2004).

RELATIONSHIP TO ALTERNATIVE MEASURES OF PERFORMANCE AND
FEEDBACK
CA is by far the most widely reported measure of performance
for BCIs and can be used for both synchronized (e.g.,
cued) and self-paced interventions (Thomas et al., 2013).
However, for some clinical applications, additional measures of
performance that are regarded as relevant for the treatment
goal have been developed. These include the latency to

movement onset or the maximum consecutive movement
time in stroke rehabilitation (Ramos-Murguialday et al.,
2013) and the path efficiency for a high degree of freedom
prosthetic control in tetraplegia (Collinger et al., 2013). How
does the ZPD now relate to these alternative performance
measures?

These alternative measures may sometimes be translated into
one of the basic measures used for calculating the ZPD, e.g.,
the average movement rate could also be understood as a
TPR. However, such measures are much more liable to contain
unique information about additional abilities that are required
for the given task to be performed, such as already mentioned
in the paragraph on the interpretation of the true positive
curve.

Since learning is conceptually linked to the accuracy of
feedback, we propose that a NFB task should be characterized by
its instructional efficacy with regard to the action to be trained.
This instructional efficacy is characterized by the feedback curves.
In this context, the CA changes as soon as the coupling of
the feedback to the action changes. The shape of the ZPD will
therefore be useful for the instructional design of the intervention
and tends to be independent of other task-specific measures. If,
for example, the subject receives feedback to alternative actions,
any improvement in these actions will be caused by the task’s
instructional design. In this respect, a ZPD, e.g., for latency of
movement onset or path efficiency, may also exist. Estimating
the ZPD for these measures would be similar to the approach
illustrated above.

It should be borne in mind that the theory presented here
is based on the classical binary feedback, the distance between
feedback and no feedback being one bit of information, i.e.,
reward (Ortega and Braun, 2010). Alternative approaches such as
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FIGURE 4 | It visualizes different shapes of ZPD. In the first two
models (A, B), the discrimination is different despite the distance
between the two conditions being equal, resulting in ZPDs with
equal areas. (A) shows success rates for a peaky but narrow ZPD
based on a two-parametric model with equal but high discrimination

values for both positive functions. (B) shows success rates for a
broad but flat ZPD based on a two-parametric model with equal but
low discrimination values. (C) shows success rates for a ZPD with a
break-point based on a two-parametric model with unequal
discrimination values.

continuous feedback (e.g., the frequency of an auditory signal)
or psychophysical perception rules (e.g., the perception of the
duration of binary feedback in a log-linear fashion) do, of course,
affect the bit-rate and may thus increase the achievable speed
of learning. However, since the ZPD is based on a single bit as
a distance metric, adequate mapping of the ZPD for alternative
feedback approaches will probably be mathematically demanding.
In order to interpret the curves under such conditions, further
research and specific transformations might be necessary. A
system analytical perspective, where continuous feedback can
be understood as a pattern of step functions, and a complex-
valued ZPD might help to solve such aspects. Nonetheless,
the real-valued ZPD based on the single bit of feedback will
also remain a fundamental building block of such advanced
approaches.

CONCLUSION WITH REGARD TO COGNITIVE RESOURCES
The ZPD may also act as a measure to compare different subjects
with regard to their cognitive resources for a NFB task. If two
subjects perform the very same NFB training, one might show
a peaky and narrow ZPD (see Figure 4A) while the other has a
broad and flat ZPD (see Figure 4B). Since in this case both curves
indicate equal abilities, this difference in the respective shapes
requires an alternative explanation. On the basis of the relevance
of cognitive resources for the ZPD (Schnotz and Kürschner,
2007), we postulate that the shape of ZPD can also be applied
to measure a subject’s cognitive resources for coping with the
mental load that occurs during a misalignment between ability
and difficulty. Such an interpretation would, furthermore, permit
a different view on the discussion about BCI illiteracy (Vidaurre
and Blankertz, 2010). In particular, when the curves of TPR and
FPR cross, they provide information about the specific break-
points of that task. At this point, any support provided by the
instructional design of the training will cease to be beneficial
and will begin to be detrimental for the performance (see

Figure 4C). This would be indicated by a negative value for the
ZPD.

However, these concepts require validation by future research.
Measurements of cognitive resources are currently based on
psychophysiological recordings (e.g., heart rate variability, blink
rate, electrodermal response), which are highly variable and
very difficult to generalize across task conditions (Cegarra and
Chevalier, 2008; Novak et al., 2010). Motor imagery itself can
also cause vegetative effects related to the imagined movement,
e.g., subjects imagining running at 12 km/h had an increased
heart rate and pulmonary ventilation as compared to walking
at 5 km/h (Decety et al., 1991). Mental imagery might therefore
affect psychophysiological biomarkers, masking the measurement
of the mental effort unrelated to the imagery content. One
alternative to psychophysiological measures is the application
of self-rating questionnaires. However, from the subject’s point
of view, it is often not possible to distinguish between the
intrinsic, extrinsic and germane load (Cegarra and Chevalier,
2008). What is more, many psychophysiological measures and
questionnaires can be sampled only at a very low rate. For
example, the low frequency part of the heart rate commences
at 0.04 Hz (Malik et al., 1996), meaning that at least 25 s
of clean data have to be recorded for adequate frequency
resolution of the Fourier transformation. Furthermore, slow
frequency fluctuations in the EEG (<0.1 Hz) can correlate
with psychophysiological performance, but they require similarly
large time windows. In addition, slow fluctuations in the EEG
measurements appear to be highly masked by imagery-related
fluctuations, e.g., movement-related cortical potentials (Shibasaki
and Hallett, 2006). This is also an issue if higher frequency
components of the EEG are used to estimate cognitive resources,
e.g., in the gamma range (Grosse-Wentrup et al., 2011), since they
need to be disentangled from pure motor-related fluctuations in
the same frequency band (de Lange et al., 2008; Miller et al.,
2012).
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In this context, the shape of ZPD might prove useful
for disentangling the multitude of interacting and complex
psychophysiological measurements in challenging tasks. This
perspective is in agreement with the understanding that a
proper alignment of ability and difficulty will reduce mental
effort (Schnotz and Kürschner, 2007). Future studies might
focus on psychophysiological correlates of the shape of the
ZPD. Furthermore, improving the instructional material should
help to reduce extrinsic load. NFB training could similarly be
supported by “instructions”, e.g., by providing haptic feedback
(Gomez-Rodriguez et al., 2011) or visual and auditory cueing
(Heremans et al., 2009). Systematic research on the impact of
these feedback modalities on the ZPD might provide insight on
their utility in guiding instructional design.
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