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Abstract

In this research, Emden-Fowler equations of higher order with boundary conditions are
considered and solved using Modified Adomian Decomposition Method (MADM). We defined a
new differential operator under two conditions: first condition when m ≤ 0 and second condition
when m ≥ 0. From this operator, we got three types of Emden-Fowler equations of higher order.
The new method is evaluated by using many examples, the results obtained through this method
reveal the effectiveness of this method for these type of equations, especially when comparisons
are made with the exact solution.
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1 Introduction

We consider the Emden-Fowler equation of the type [1,2]
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y′′ +
m+ n

x
y′ +

m(n− 1)

x2
y + g(x, y) = 0, (1)

where g(x, y) is a known function of (x,y), n ≥ 1 and m will take two values when m ≥ 0
under specific conditions and when m ≤ 0 under specific conditions. Those conditions will be
discussed in details later. Such issues frequently appear usually in numerous ranges of science
and engineering. For instance, the emerge in fluid mechanics, quantum mechanics, chemical rector
hypothesis, geographics, and forth. If we examine (1), we can say that the main difficulty lies in
the singular behaviour that occurs at x = 0. The Emden-Fowler equation is regarded to be of great
importance in mathematics. Due to its great significance, several method were introduced to study
this equation such as Ramos [3] finding a series of solutions to nonlinear equations to solve the
Lane-Emden equation using Homotopy Perturation Method.

Wazwaz [4], Wazwaz and Rach [5], Wazwaz [6] had solved the Lane-Emden-Fowler equation
using Variational Iteration Method. In addition, there are other methods that have been
given to solve Emden-Fowler equation. For example, Chebyshev Neural Method by Mall and
Chakraverty [7], Haar Wavelet Quasilinearization Method by Singh et al. [8]. Radial Basis Function
Collocation Method, Radial Basis Function Differential Quadrature Method by Parand et al. [9].
Finite Element Method, Adomian Decomposition Algorithm by Hosson [10] and Adomian
Decomposition Method [11,12,13]. In [11] Wazwaz et al. had solved three types of Emden-Fowler
equations of fourth order with initial conditions. In [12] he had presented a reliable algorithm to
determine the solution of the generalized Emden-Fowler equation. In our study, we studied three
types of Emden-Fowler equations of higher order with boundary conditions using MADM.

The Adomain decomposition method (ADM) [14,15,16,17] has appeared in 1980s and was firstly
introduced by the American scientist Adomain George. This method has been proven to be efficient
and reliable in solving different attained by (ADM) converge to the exact solution. This method has
attracted the attention of various researchers and therefore was used by many mathematicians to
solve different kinds of equations, introducing many modifications on it seen in Biazar and Hosseini
[18], Hasan and Zhu [19]. We object in this study to solve various kinds of Emden-Fowler type
equations of higher order. We proposed a highly effective differential operator to solve different
types of Emden-Fowler equations.

2 Structure of Emden-Fowler Kinds Equations

It is significant to mention that the Emden-Fowler equation (1) was derived by using the equation

x−n d

dx
xn−m d

dx
xm(y) + g(x, y) = 0. (2)

The sense of (2) is used in order to derive the Emden-Fowler equations of different order.

x−n d

dx
xn−m d

dx
xm

dk−1

dxk−1
(y) + g(x, y) = 0, (3)

where n ≥ 1. To determine such different equations of higher order we set m to different values.

2.1 First kind for m ̸= 0, n ̸= 1,

y(k+1) +
m+ n

x
yk +

m(n− 1)

x2
y(k−1) + g(x, y) = 0, (4)

2.2 Second kind for m=0,

put m = 0 in eq.(3) obtains

y(k+1) +
n

x
yk + g(x, y) = 0 (5)
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2.3 Third kind for m = −n,

put m = −n, in eq.(3) obtains

y(k+1) − n(n− 1)

x2
y(k−1) + g(x, y) = 0, (6)

3 Description of the Method and Its Application

Assume the singular boundary value problem of higher order ordinary differential equations as
eq.(4)
under the two conditions

1. When m≤ 0, we use the following condition

y(a0) = A, y′(a1) = B, y′′(a2) = C, ..., y(k−1)(an) = D, y(k)(0) = E, (7)

where an ̸= 0

2. When m≥ 0. we use the following condition

y(a0) = A, y′(a1) = B, y′′(a2) = C, ..., y(k−2)(an) = D,

y(k)(0) = E, y(k−1)(0) = F, (8)

where g(x, y) is a known function and A,B,C,D,E, F are constants and n ≥ 1, k ≥ 1.

We offer the new differential operator as follows

L(.) = x−n d

dx
xn−m d

dx
xm

d(k−1)

dx(k−1)
(.). (9)

Eq.(4) can be written as
Ly = −g(x, y). (10)

For the conditions (7),(8) we have the inverse operator L−1 respectively

L−1(.) =

∫ x

a0

∫ x

a1

∫ x

a2

...

∫ x

an−1︸ ︷︷ ︸
(k−1)

x−m

∫ x

an

xm−n

∫ x

0

xn dxdxdx...dxdxdx︸ ︷︷ ︸
(k+1)

, (11)

L−1(.) =

∫ x

a0

∫ x

a1

∫ x

a2

...

∫ x

an︸ ︷︷ ︸
(k−1)

x−m

∫ x

0

xm−n

∫ x

0

xn dxdxdx...dxdxdx︸ ︷︷ ︸
(k+1)

. (12)

By applying L−1 on (10), we have

y(x) = γ(x)− L−1(g(x, y), (13)

such that
L(γ(x)) = 0.

The method by Adomian is given the solution y(x) and the function g(x, y) by infinite series

y(x) =

∞∑
n=0

yn(x), (14)
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and

g(x, y) =

∞∑
n=0

An, (15)

where the elements yn(x) of the solution y(x) will be determined repeatable. Specific algorithms
were seen [14,16] to formulate Adomian polynomials. The following algorithm:

A0 = G(y0),

A1 = y1G
′(y0),

A2 = y2G
′(y0) +

1

2!
y21G

′′(y0),

A3 = y3G
′(y0) + y1y2G

′′(y0) +
1

3!
y31G

′′′(y0), (16)

....

Can be used to build Adomian polynomials, when G(y) is any function. From (15),(14) and (13)
we have

∞∑
n=0

yn(x) = γ(x) + L−1
∞∑

n=0

An. (17)

The component y(x) can be given by using Adomian decomposition method as follows

y0 = γ(x),

y(n+1) = L−1An, n ≥ 0, (18)

thus
y0 = γ(x),

y1 = L−1A0,

y2 = L−1A1,

y3 = L−1A2, (19)

....

Using the equations (16) and (19) we can determine the components yn and therefore we can
immediately obtain series solutions of y(x) in (17). In addition, and for numerical reasons, we can
use the n-term approximate

ψn =

n−1∑
n=0

yn, (20)

in order to approximate the exact solution. The validity of the above presented approach can be
achieved through testing it on various types of several linear and non-linear differential equations
with initial value problems.

3.1 Examples on the first type of Emden-Fowler equations of nth

order

In this section, we study many examples for different values of m. In example (1) we study the
equation of second order when m = −3, n = 2, in examples (2,3) we study the equation of third
order when m = 4,m = −4, respectively and n = 6, also in examples (4,5) we study the equation
of fifth order when m = 3,m = −3, respectively and n = 2.

Example.1 Substitute m = −3, n = 2, k = 1, in equation (4) we get

y′′ − 1

x
y − 3

x2
y − x6 + y2 = 0, (21)
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y(1) = 1, y′(0) = 0.

Exact solution is y(x) = x3 .

Eq.(21) can be written as

Ly = x6 − y2, (22)

where

L(.) = x−2 d

dx
x5

d

dx
x−3(.),

and

L−1 = x3
∫ x

1

x−5

∫ x

0

x2(.)dxdx,

applying L−1 on (22) we find

y = x3 + L−1x6 − L−1y2,

therefore

y = 0.977778x3 + 0.0222222x8 − L−1y2. (23)

Replace the decomposition series yn(x) for y(x) into (23) gives

∞∑
n=0

yn(x) = 0.977778x3 + 0.0222222x8 − L−1An, (24)

y0 = 0.977778x3 + 0.0222222x8,

yn+1 = −L−1An, n ≥ 0, (25)

A0 = y20 ,

A1 = 2y0y1,

A2 = y21 + 2y0y2,

A3 = 2y1y2 + 2y0y3, (26)

....

From (25) and (26) we get

y0 = 0.9777777778x3 + 0.02222222222x8,

y1 = 0.0215577x3 − 0.0212455x8 − 0.000310406x13 − 1.73273 10−6 x18,

y2 = −0.000641429x3 + 0.000936828x8 − 0.000289919x13 − 5.44302 10−6 x18

−3.58005 10−8 x23 − 1.06221 10−10 x28,

y3 = −0.0000222338x3 + 0.0000382019x8 − 0.0000194251x13 + 3.38002 10−6 x18

+7.63421 10−8 x23 + 6.64689 10−10 x28 + 2.81819 10−12 x33 + 5.65807 10−15 x38,

y(x) = y0 + y1 + y2 + y3 = 0.998716x3 + 0.00187531x8 − 0.0005809x13 − 0.0000105558x18

−1.12143 10−7 x23 − 7.70909 10−10 x28 − 2.81819 10−12 x33 − 5.65807 10−15 x38,

Table 1 and Fig. 1 explain the convergence between (MADM) and the exact solution
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Table 1. Comparison of numerical errors between the right solution y = x3 and the
MADM solution y =

∑3
n=0 yn(x).

x Exact MADM Absolute error

0.0 0.000 0.000000000 0.000000000
0.1 0.001 0.000998716 0.000001284
0.2 0.008 0.007989730 0.000010270
0.3 0.027 0.026965500 0.000034500
0.4 0.064 0.063919100 0.000080900
0.5 0.125 0.124847000 0.000153000
0.6 0.216 0.215753000 0.000247000
0.7 0.343 0.342662000 0.000338000
0.8 0.512 0.511625000 0.000375000
0.9 0.729 0.728722000 0.000278000
1.0 1.000 1.000000000 0.000000000

——– Exact ——– MADM

Fig. 1. Comparison of exact and approximate solution curves for Example 1

Example 2. Consider equation:

y′′′ +
10

x
y′′ +

20

x2
y′ − 224x+ ex

4

− ey = 0, (27)

with the conditions

y(
1

2
) =

1

16
, y′(0) = 0, y′′(0) = 0,

when m = 4, n = 6, k = 2 in (4),
in ADM operator form equation (27) becomes

Ly = 224x− ex
4

+ ey, (28)

where

L(.) = x−6 d

dx
x2

d

dx
x4

d

dx
(.),

so, L−1 is given by

L−1(.) =

∫ x

1
2

x−4

∫ x

0

x−2

∫ x

0

x6(.)dxdx.

Taking L−1 to both side of (28) and using the conditions we obtain

14
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y(x) = L−1(224x− ex
4

) + L−1ey, (29)

Displace the decomposition series
∑∞

n=0 yn(x) into (29) gives

∞∑
n=0

yn(x) = 0.00100232− 0.00793651x3 + x4 − 0.0012987x7 − 0.00021645x11

+ L−1An, (30)

the ADM introduce the recursive relation

y0 = 0.00100232− 0.00793651x3 + x4 − 0.0012987x7 − 0.00021645x11,

yn+1 = L−1(An), n ≥ 0, (31)

then
y0 = 0.00100232− 0.00793651x3 + x4 − 0.0012987x7 − 0.00021645x11,

y1 = −0.00100309 + 0.00794447x3 − 0.000014712x6 + 0.0013x7 + 2.24542 10−8 x9

−5.07938 10−6 x10 + 0.000216667x11 − 2.89588 10−11 x12,

y2 = 7.71219 10−7 − 7.96898 10−6 x3 + 0.0000147415x6 − 1.30401 10−6 x7 − 5.5465 10−8 x9

+5.08957 10−6 x10 − 2.17336 10−7 x11 + 1.3538 10−10 x12,

...

Thus, the approximate solution is

y(x) = y0 + y1 + y2 = 8.70116 10−10 − 1.01093 10−8 x3 + x4 + 2.95108 10−8 x6 − 1.65425 10−9 x7

−3.30109 10−8 x9 + 1.01887 10−8 x10 − 2.75709 10−10 x11 + 1.06421 10−10 x12.

Fig. 2 shows a good approximate between MADM solution and exact solution.

——– Exact ——– MADM

Fig. 2. Comparison of exact and approximate solution curves for Example 2

Example 3. Consider equation:

y′′′ +
2

x
y′′ − 20

x2
y′ + 32x+ ex

4

− ey = 0, (32)

with the conditions

y(
1

2
) =

1

16
, y′(

1

3
) =

4

27
, y′′(0) = 0,

15
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when m = −4, n = 6, k = 2 in (4),
rewrite eq.(32) as follows

Ly = −32x− ex
4

+ ey, (33)

where

L(.) = x−6 d

dx
x10

d

dx
x−4 d

dx
(.),

so, L−1 is given by

L−1(.) =

∫ x

1
2

x4
∫ x

1
3

x−10

∫ x

0

x6(.)dxdx.

Taking L−1 to both side of (33) and using the conditions we obtain

y(x) = L−1(−32x− ex
4

) + L−1ey, (34)

substituting the decomposition series
∑∞

n=0 yn(x) into (34) gives

∞∑
n=0

yn(x) = 0.00106103 + 0.0238095x3 + x4 − 0.12756x5 − 0.00649351x7

− 0.000505051x11 + L−1An, (35)

the ADM introduce the recursive relation

y0 = 0.00106103 + 0.0238095x3 + x4 − 0.12756x5 − 0.00649351x7 − 0.000505051x11,

yn+1 = L−1(An), n ≥ 0, (36)

y0 = 0.00106103 + 0.0238095x3 + x4 − 0.12756x5 − 0.00649351x7 − 0.000505051x11,

y1 = −0.00106249− 0.0238348x3 + 0. x4 + 0.127562x5 + 0.000397247x6 + 0.0065004x7

−0.000443386x8 + 6.06298 10−7 x9 + 0.0000247634x10 + ...+ 0. x5 log(x),

y2 = 1.45763 10−6 + 0.0000253241x3 + 0. x4 − 2.64701 10−6 x5 − 0.00039809x6 − 6.90658 10−6 x7

+0.000443867x8 − 3.64809 10−7 x9 − 0.000024816x10 + ...+ 0. x18 log(x),

The approximate solution by MADM is given by

y(x) = y0 + y1 + y2 = 2.79822 10−9 + 4.80873 10−8 x3 + 1. x4 + 4.01243 10−8 x5 − 8.43783 10−7 x6

−1.31147 10−8 x7 + 4.80432 10−7 x8 + 2.41489 10−7 x9 − 5.25995 10−8 x10 + ...+ 0. x18 log(x).

Example 4. Substitute m = 3, n = 2, k = 4, in equation (4) we get:

y(5) +
5

x
y(4) +

3

x2
y(3) − 24− 36x

x2
e−5y = 0, (37)

with the conditions

y(0) = log 2, y′(0) =
1

2
, y′′(

1

2
) =

−2

25
, y′′′(0) =

1

4
, y′′′′(0) =

−3

8
,

in an oprator form eq.(37) can be written as

Ly =
24− 36x

x2
e−5y, (38)

where

L(.) = x−2 d

dx
x−1 d

dx
x3

d3

dx3
(.),

16
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so, L−1 is given by

L−1(.) =

∫ x

0

∫ x

0

∫ x

1
2

x−3

∫ x

0

x

∫ x

0

x2(.)dxdx.

Taking L−1 (38) and using the conditions we obtain

y(x) = 0.693147 + 0.5x− 0.08x2 + L−1(
24− 36x

x2
e−5y), (39)

Replace the decomposition series
∑∞

n=0 yn(x) into (39) gives

∞∑
n=0

yn(x) = 0.693147 + 0.5x− 0.08x2 + L−1(
24− 36x

x2
An), (40)

the ADM introduce the repetitive relation

y0 = 0.693147 + 0.5x− 0.08x2,

yn+1 = −L−1(An), n ≥ 0, (41)

y0 = 0.693147 + 0.5x− 0.08x2,

y1 = −0.0449217x2 + 0.0416667x3 − 0.015625x4 + 0.0060625x5 − 0.00231554x6 + 0.000853455x7

−0.000301892x8 + 0.000102371x9 − 0.0000333048x10 + ...+ 9.09044 10−7 x13,

y2 = 0.0000778897x2 + 0.000187174x5 − 0.000288221x6 + 0.000259743x7 − 0.000179296x8

+0.000104691x9 − 0.0000542495x10 + ...+ 4.65124 10−6 x13,

...

The approximate solution by MADM is given by

y(x) = y0 + y1 + y2 = 0.693147 + 0.5x− 0.125x2 + 0.0416667x3 − 0.015625x4 + 0.00624967x5

−0.00260376x6 + 0.0011132x7 − 0.000481188x8 + 0.000207063x9 − 0.0000875543x10

+...+ 5.56029 10−6 x13

Take notice, the exact solution y(x) = ln(x+ 2) can be written in a series form as

y(x) = 0.693147 + 0.5x− 0.125x2 + 0.0416667x3 − 0.015625x4 + 0.00625x5

−0.00260417x6 + 0.00111607x7 − 0.000488281x8 + 0.000217014x9 − 0.0000976563x10

+...+ 9.39002 10−6 x13.

Example 5. Substitute m = −3, n = 2, k = 4, in equation (4) we obtain:

y(5) − 1

x
y(4) − 3

x2
y(3) − 12(−2− x+ 2x2)

x2
e−5y = 0, (42)

with the conditions

y(0) = log 2, y′(0) =
1

2
, y′′(0) =

−1

4
, y′′′(1) =

2

27
, y′′′′(0) =

−3

8
,

note that the exact solution is ln(x+ 2),
in an oprator form eq.(42) can be written as

Ly =
12(−2− x+ 2x2)

x2
e−5y, (43)

17
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where

L(.) = x−2 d

dx
x5

d

dx
x−3 d

3

dx3
(.),

so, L−1 is given by

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

x3
∫ x

1

x−5

∫ x

0

x2(.)dxdx.

Taking L−1 to (43) and using the conditions we obtain

y(x) = 0.693147 + 0.5x− 0.125x2 + 0.000617284x6

+ L−1(
12(−2− x+ 2x2)

x2
e−5y), (44)

Replace the decomposition series
∑∞

n=0 yn(x) into (44) have

∞∑
n=0

yn(x) = 0.693147 + 0.5x− 0.125x2 + 0.000617284x6

+ L−1(
24− 36x

x2
An), (45)

the ADM introduce the recursive relation

y0 = 0.693147 + 0.5x− 0.125x2 + 0.000617284x6,

yn+1 = −L−1(An), n ≥ 0, (46)

y0 = 0.693147 + 0.5x− 0.125x2 + 0.000617284x6,

y1 = 0.0416667x3 − 0.015625x4 + 0.00625x5 − 0.00346015x6 + 0.00146949x7 − 0.000581287x8

+0.00022935x9 − 0.0000878734x10 + ...,

y2 = −0.000353423x7 + 0.000093006x8 + x9
(
−0.0000107847− 1.15335 10−7 log(x)

)
+x10

(
−0.0000116657 + 1.05964 10−7 log(x)

)
+ x6 (0.000189275 + 0.000325521 log(x)) + ...,

...

The approximate solution by MADM is given by

y(x) = y0 + y1 + y2 = 0.693147 + 0.5x− 0.125x2 + 0.0416667x3 − 0.015625x4 + 0.00625x5

−0.00265359x6 + 0.00111607x7 − 0.000488281x8 + x9
(
0.000218566− 1.15335 10−7 log(x)

)
+ ....

Take notice, exact solution y(x) = ln(x+ 2) can be written in a series form as

y(x) = 0.693147 + 0.5x− 0.125x2 + 0.0416667x3 − 0.015625x4 + 0.00625x5

−0.00260417x6 + 0.00111607x7 − 0.000488281x8

+0.000217014x9 − 0.0000976563x10 + ....

As noticed in examples 4 and 5, the solution using ADM converges towards the exact solution with
minor frequencies, which indicates the efficiency of the ADM as a method to solve those types of
problems.

18
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——– Exact ——– MADM

Fig. 3. Comparison of exact and approximate solution curves for Example 3

3.2 The second type of Emden-Fowler equations of nth order

The second Type of Emden-Fowler Equations of nth Order is

y(k+1) +
n

x
y(k) + g(x, y) = 0 (47)

y(a0) = A, y′(a1) = B, y′′(a2) = C, ..., y(k−1)(an) = D, y(k)(0) = E.

Rewrite eq.(47) as follows

Ly = −g(x, y), (48)

where

Ly = x−n d

dx
xn

dk

dxk
(y),

and

L−1(.) =

∫ x

a0

∫ x

a1

∫ x

a2

...

∫ x

an−1

∫ x

an︸ ︷︷ ︸
(k)

x−n

∫ x

0

xn dxdxdx...dxdxdx︸ ︷︷ ︸
(k+1)

.

By applying L−1 on (48) we have

y(x) = γ(x)− L−1g(x, y), (49)

where γ(x) come out from using the conditions.

We will give thre examples on this kind of equations.

Example 6. Substitute k = 2, n = 10, in eq. (47) we have

y′′′ +
10

x
y′′ − (1 + x2 +

20

x
− y) = 0, (50)

y(0) = 1, y′(1) = 2, y′′(0) = 2.

And y(x) = 1 + x2 is the exact solution.

Eq.(50) can be written as

Ly = 1 + x2 +
20

x
− y, (51)
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where

L(.) = x−10 d

dx
x10

d2

dx2
(.),

and

L−1(.) =

∫ x

0

∫ x

1

x−10

∫ x

0

x10(.)dxdxdx.

Using L−1 on eq.(51), we get

y(x) = L−1(1 + x2 +
20

x
)− L−1y. (52)

Replace the decomposition series yn(x) for y(x) into (52) gives

∞∑
n=0

y(x) = L−1(48 + x8)− L−1yn. (53)

y0 = L−1(1 + x2 +
20

x
),

yn+1 = −L−1(yn), n ≥ 0, (54)

then

y0 = 1 + x2 − 0.0646853x+ 0.0151515x3 + 0.00384615x5,

y1 = 0.0631393x−0.0151515x3+0.000449204x4−0.00384615x5−0.000036075x6−4.29258 10−6 x8,

y2 = 0.00150778x− 0.000438467x4 + 0.000036075x6 − 7.13022 10−7 x7 + 4.29258 10−6 x8

+2.94731 10−8 x9 + 2.05387 10−9 x11,

y3 = 0.0000372946x− 0.0000104707x4 + 6.9598 10−7 x7 − 2.94731 10−8 x9 + 4.40137 10−10 x10

−2.05387 10−9 x11 − 1.1164 10−11 x12 − 5.12954 10−13 x14,

y(x) = y0+y1+y2+y3 = 1+x2−9.4724 10−7 x+2.65568 10−7 x4−1.70417 10−8 x7+4.40137 10−10 x10

−1.1164 10−11 x12 − 5.12954 10−13 x14.

Fig. 4 offer the comparison between MADM solution and exact solution.

——– Exact ——– MADM

Fig. 4. Comparison of exact and approximate solution curves for Example 6
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Example 7. Substitute k = 3, n = 1, in eq. (47) we have

y(4) +
1

x
y(3) − 48− x8 + y2 = 0, (55)

y(1) = 1, y′(
1

2
) =

1

2
, y′′(

1

6
) =

1

3
, y′′′(0) = 0.

And y(x) = x4 is the exact solution.

Eq.(55) can be written as

Ly = 48 + x8 − y2, (56)

where

L(.) = x−1 d

dx
x
d3

dx3
(.),

and

L−1(.) =

∫ x

1

∫ x

1
2

∫ x

1
6

x−1

∫ x

0

x(.)dxdxdxdx.

Using L−1 on eq.(56), we get

y(x) = L−1(48 + x8)− L−1y2. (57)

Replace the decomposition series yn(x) for y(x) into (57) gives

∞∑
n=0

y(x) = L−1(48 + x8)− L−1An. (58)

y0 = L−1(48 + x8),

yn+1 = −L−1(An), n ≥ 0, (59)

where An are Adomian polynomials of nonlinear term y2, as follows

A0 = y20 ,

A1 = 2y0y1,

A2 = 2y0y2 + y21 , (60)

...

From (59) and (60)

y0 = −0.0000753137− 4.43809 10−7 x− 8.26909 10−11 x2 + x4 + 0.0000757576x12,

y1 = 0.0000752447 + 4.39215 10−7 x+ 5.75308 10−11 x2 − 1.1817 10−10 x4 − 3.71388 10−13 x5

−4.36296 10−16 x6 − 6.99028 10−20 x7 + 7.4716 10−8 x8 + ...− 1.12301 10−14 x28,

y2 = −6.88768 10−8 − 4.55044 10−9 x− 5.44271 10−12 x2 − 2.36123 10−10 x4 − 7.38591 10−13 x5

−8.56178 10−16 x6 − 1.17813 10−19 x7 + 7.46475 10−8 x8 + ...− 5.09824 10−25 x44,

y(x) = y0 + y1 + y2 = −1.37876 10−7 − 9.14463 10−9 x− 3.06027 10−11 x2 + 1. x4 − 1.10998 10−12 x5

−1.29247 10−15 x6 − 1.87716 10−19 x7 + 1.49363 10−7 x8 + ...− 5.09824 10−25 x44.

Fig. 5 offer the comparison between MADM solution and exact solution.
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——– Exact ——– MADM

Fig. 5. Comparison of exact and approximate solution curves for Example 7

Example 8. We assume the Emden-Fowler type equation

y(6) +
3

x
y(5) − 16ex

2

(30 + 75x2 + 36x4 + 4x6) = 0, (61)

y(0) = 1, y′(0) = 0, y′′(1) = 6e, y′′′(
1

2
) = 7e

1
4 , y′′′′(

1

3
) =

1420

81
e

1
9 , y′′′′′(0) = 0.

Note that y(x) = ex
2

is the exact solution.
In an operator form eq.(61) can be written as

Ly = 16ex
2

(30 + 75x2 + 36x4 + 4x6). (62)

Where

L(.) = x−3 d

dx
x3

d5

dx5
(.),

and

L−1(.) =

∫ x

0

∫ x

0

∫ x

1

∫ x

1
2

∫ x

1
3

x−3

∫ x

0

x3(.)dxdxdxdxdxdx.

Using L−1 to both side of eq.(62), we have

y(x) = ex
2

, (63)

example (8) shows the ability of our method in the finding of the exact solution.

3.3 The third Type of nth Order

The third Type of nth Order is

y(k+1) − n(n− 1)

x2
y(k−1) + g(x, y) = 0 (64)

y(a0) = A, y′(a1) = B, y′′(a2) = C, ..., y(k−1)(an) = D, y(k)(0) = E,

where an ̸= 0. Eq.(59) can be written as

Ly = −g(x, y), (65)
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Where

L(.) = x−n d

dx
x2n

d

dx
x−n d(k−1)

dx(k−1)
(.),

and inverse operator

L−1(.) =

∫ x

a0

∫ x

a1

∫ x

a2

...

∫ x

an−1︸ ︷︷ ︸
(k−1)

xn
∫ x

an

x−2n

∫ x

0

xn(.) dxdxdx...dxdxdx︸ ︷︷ ︸
(k+1)

.

Applying L−1 on (60)
y(x) = γ(x)− L−1g(x, y), (66)

where γ(x) come out from using the conditions.

we will study three examples on this kind for different order

Example 9. Substitute k = 1, n = 2, in eq. (64) we have

y′′ − 2

x2
y + (1 +

2

x2
) sinx = 0, (67)

y(1) = sin 1, y′(0) = 1.

Note that y(x) = sinx is the exact solution.

In an operator form eq.(67) can be written as

Ly = −(1 +
2

x2
) sinx. (68)

Where

L(.) = x−2 d

dx
x4

d

dx
x−2(.),

and

L−1(.) = x2
∫ x

0

x−4

∫ x

0

x2(.)dxdx.

Using L−1 to both side of eq.(68), we have

y(x) = sinx, (69)

in this example, we get the exact solution.

Example 10. Consider equation:

y′′′ − 6

x2
y′ + 12 + x9 − y3 = 0, (70)

y(
1

3
) =

1

27
, y′(

1

2
) =

3

4
, y′′(0) = 0.

When k = 2, n = 3, in eq.(64), and y(x) = x3 is the exact solution.

We can write eq.(70) in an operator form as follows

Ly = −12− x9 + y3, (71)

where

L(.) = x−3 d

dx
x6

d

dx
x−3 d

dx
(.),
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and

L−1(.) =

∫ x

1
3

x3
∫ x

1
2

x−6

∫ x

0

x3(.)dxdxdx.

Applying L−1 to eq.(71), we get

y(x) = −1.14418 10−7 + x3 + 9.39002 10−6 x4 − 0.000801282x12 + L−1y3. (72)

Replace the decomposition series yn(x) for y(x) into (72) gives

∞∑
n=0

y(x) = −1.14418 10−7 + x3 + 9.39002 10−6 x4 − 0.000801282x12

+ L−1An, (73)

y0 = −1.14418 10−7 + x3 + 9.39002 10−6 x4 − 0.000801282x12,

yn+1 = −L−1(An), n ≥ 0, (74)

where An are Adomian polynomials of nonlinear term y2, as follows

A0 = y30 ,

A1 = 3y20y1,

A2 = 3y20y2 + 3y21y0, (75)

...

Substituting (74) into (75) gives the components

y0 = −1.14418 10−7 + x3 + 9.39002 10−6 x4 − 0.000801282x12,

y1 = 1.14419 10−7 + 1.24827 10−22 x3 − 9.39007 10−6 x4 + 4.67557 10−16 x6

+2.19518 10−21 x7 − 7.6279 10−10 x9 − 9.7672 10−15 x10 − ...− 9.42244 10−15 x39,

y2 = −5.62238 10−13 − 3.74482 10−22 x3 + 4.32737 10−11 x4 − 9.35118 10−16 x6 − 6.58558 10−21 x7

+7.62794 10−10 x9 + 1.95345 10−14 x10 + ...− 6.61981 10−26 x66,

y(x) = y0+y1+y2 = −4.78541 10−18+1. x3+4.17001 10−16 x4−4.67561 10−16 x6−4.3904 10−21 x7

+3.74822 10−15 x9 + 9.76729 10−15 x10 + ...− 6.61981 10−26 x66,

——– Exact ——– MADM

Fig. 6. Comparison of exact and approximate solution curves for Example 10
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Example 11. Substitute k = 7, n = 5, in (64) we have

y(8) − 20

x2
y(6) − (1− 20

x2
)ex + x− lny = 0, (76)

y(0) = 1, y′(0) = 1, y′′(
1

3
) = e

1
3 , y(3)(

1

2
) = e

1
2 , y(4)(

1

4
) = e

1
4 , y(5)(

1

6
) = e

1
6 , y(6)(1) = e, y(7)(0) = 1.

And y(x) = ex is the exact solution.

We can write eq.(76) in an operator form as follows

Ly = (1− 20

x2
)ex − x+ lny, (77)

where

L(.) = x−5 d

dx
x10

d

dx
x−5 d

6

dx6
(.),

and

L−1(.) =

∫ x

0

∫ x

0

∫ x

1
3

∫ x

1
2

∫ x

1
4

∫ x

1
6

x5
∫ x

1

x−10

∫ x

0

x5(.)dxdxdxdxdxdxdxdx.

Applying L−1 to eq.(77), we get

y(x) = ex +1.15269 10−6 x2 − 1.1297 10−6 x3 − 1.26963 10−10 x4 − 1.12696 10−7 x5 +1.18103 10−6 x9

− 2.14732 10−7 x11 + L−1lny. (78)

Replace the decomposition series yn(x) for y(x) into (78) gives

∞∑
n=0

y(x) = ex + 1.15269 10−6 x2 − 1.1297 10−6 x3 − 1.26963 10−10 x4 − 1.12696 10−7 x5

+ 1.18103 10−6 x9 − 2.14732 10−7 x11 + L−1An. (79)

y0 = ex + 1.15269 10−6 x2 − 1.1297 10−6 x3 − 1.26963 10−10 x4 − 1.12696 10−7 x5 + 1.18103 10−6 x9

+1.18103 10−6 x9 − 2.14732 10−7 x11,

yn+1 = −L−1(An), n ≥ 0, (80)

then

y0 = ex + 1.15269 10−6 x2 − 1.1297 10−6 x3 − 1.26963 10−10 x4 − 1.12696 10−7 x5 + 1.18103 10−6 x9

−2.14732 10−7 x11,

y1 = −1.15269 10−6x2 + 1.1297 10−6 x3 + 1.26965 10−10 x4 + 1.12696 10−7 x5 − 1.18103 10−6 x9

−9.52949 10−13 x10 + ...− 7.62383 10−13 x11 log(x),

y2 = 1.76299 10−13x2 − 1.72447 10−13 x3 − 1.41747 10−15 x4 − 1.50093 10−14 x5

+9.52949 10−13 x10 + ...+ 7.62383 10−13 x11 log(x),

y(x) = y0 + y1 + y2 = ex + 1.76299 10−13x2 − 1.72447 10−13 x31.70921 10−21 x4 − 1.50093 10−14 x5

− 2.14732 10−7 x11, (81)

Propagation equation (73) using Taylor series of order 10 we obtain

y(x) = 1+x+0.5x2+0.166667x3+0.0416667x4+0.00833333x5+0.00138889x6+0.000198413x7

+0.0000248016x8 + 2.75573 10−6 x9 + 2.75573 10−7 x10,

and the exact solution y(x) = ex by Taylor series of order 10 is

y(x) = 1+x+0.5x2+0.166667x3+0.0416667x4+0.00833333x5+0.00138889x6+0.000198413x7

+0.0000248016x8 + 2.75573 10−6 x9 + 2.75573 10−7 x10.
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4. Conclusion

In this article, we offer a new method for solving different kinds of Emden -Fowler equations of
higher order with boundary conditions by applying a suggested modification of ADM. The results
obtained using the presented method were very accurate compared to some modifications made on
the ADM, and very close to the exact solution as we noted in the illustrative examples. Moreover,
the exact solution was obtained several times as in the examples (8,9). Figs. 1-6 show that the
approximate solution curves match favourably well with the exact solution curves. The MADM was
able to solve these type of equations that the standard of the ADM could not solve.The numerical
and graphical results depict the efficiency and accuracy of the proposed method.
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