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Pre-clinical and clinical spinal cord injury (SCI) studies differ in study design,

particularly in the demographic characteristics of the chosen population. In

clinical study design, criteria such as such as motor scores, neurological level,

and severity of injury are often key determinants for participant inclusion.

Further, demographic variables in clinical trials often include individuals from a

wide age range and typically include both sexes, albeit historically most cases

of SCI occur in males. In contrast, pre-clinical SCI models predominately

utilize young adult rodents and typically use only females. While it is often

not feasible to power SCI clinical trials to test multi-variable designs such as

contrasting different ages, recent pre-clinical findings in SCI animal models

have emphasized the importance of considering age as a biological variable

prior to human experiments. Emerging pre-clinical data have identified case

examples of treatments that diverge in efficacy across different demographic

variables and have elucidated several age-dependent effects in SCI. The extent

to which these differing or diverging treatment responses manifest clinically

can not only complicate statistical findings and trial interpretations but also

may be predictive of worse outcomes in select clinical populations. This

review highlights recent literature including age as a biological variable in

pre-clinical studies and articulates the results with respect to implications for

clinical trials. Based on emerging unpredictable treatment outcomes in older

rodents, we argue for the importance of including age as a biological variable

in pre-clinical animal models prior to clinical testing. We believe that careful

analyses of how age interacts with SCI treatments and pathophysiology will

help guide clinical trial design and may improve both the safety and outcomes

of such important efforts.
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Introduction

The average age at the time of spinal cord injury (SCI)
has increased over time. In the 1970s, the average age
at the time of SCI was 28 years old (yo) but as of 2015
has increased to 43 years old (NSCISC, 2022). Despite
the typical clinical SCI demographic as that of a middle-
aged male, pre-clinical animal models predominately
utilize young adult female rodents (Stewart et al., 2020).
Recently, we comprehensively reviewed the effect of
sex differences in SCI modeling and the importance
of including sex as a biological variable (Stewart et al.,
2020). Collectively, it is important to consider the
significant dichotomy between clinical populations and
animal models in the interpretation and applicability
of pre-clinical SCI findings in the use toward clinical
translation.

In this review, we will discuss why older age at the
time of SCI is associated with worse functional outcomes
in animal models as well as the confounding variables
that affect the interpretation of age-dependent effects
clinically. We will review several biological underpinnings
of secondary injury and recovery that are affected by the
aging process. Specifically, we will cover known physiological
aging adaptations that influence SCI responses, exacerbate
secondary injury, and worsen functional outcomes. We will
also discuss the somewhat unpredictable and unexpected
results of animal studies focusing on interventions tailored to
treat age-associated physiological differences. The conclusion
of our comprehensive evaluation, namely that age can
have profound effects on treatment approaches, supports
the re-evaluation of pre-clinical therapeutic strategies as
well as indicates that the minimal information necessary
to translate preclinical results into clinical trials should be
reconsidered. Articles in this review were chosen based on
a comprehensive review of pre-clinical animal literature
covering comparisons between animal models of young
adult ages and older, as well as selected clinical reports
offering contrasting findings about the role of age in
the SCI population.

Abbreviations: 3-NT, 3-nitrotyrosine; 4-HNE, 4-hydroxy-non-enol;
5-HT, serotonin; BBB, Basso Beattie and Bresnahan scale of locomotor
recovery; BMS, Basso mouse scale; DHE, dihydroethidium; DNP,
2,4-dinitrophenol; dpi, days post-injury; GCL, gamma glutamyl-
cysteine ligase; GPx, glutathione peroxidase; GSH, glutathione;
IgG, immunoglobulin G; KO, knockout; MO, months old; MPTP,
mitochondrial permeability transition pore; NAC, N-acetylcysteine;
NACA, N-acetylcysteine amide; NASCIC, North American Spinal Cord
Injury Consortium; NnT, nicatinamide nucleotide transhydrogenase;
NOX, NADPH oxidase; PTEN, phosphatase and tensin homologue
protein; RBCs, red blood cells; ROS, reactive oxygen species; SCI, spinal
cord injury; SDF-1, stromal derived factor 1; TBI, traumatic brain injury;
TH, tyrosine hydroxylase; YO, years old.

Age at time of spinal cord injury
and the clinical population

Determining how age at the time of injury affects clinical
outcomes after SCI is challenging. Mortality after SCI increases
with age creating a potential selection bias where more
resilient, or less severely injured, older individuals are a
larger representation within longitudinal clinical data (Furlan
and Fehlings, 2009). This bias leads to caveats regarding
directly comparing across age groups. Additionally, the causes
and mechanisms of injury differ between young and older
persons, presenting a further confound. While comparing injury
responses across age groups in animal models can address some
caveats present in clinical data, central cord syndrome (CCS) is
a common mechanism of SCI with a higher representation in
older persons and is difficult to model in animals. Displacement
injuries produced by vertebral distraction can manifest in a
pathology similar to CCS (Chen et al., 2016), however, this
model of SCI has not been evaluated across different ages in
rodents. Overall, CCS is not represented as a common model
of SCI in animals. Additionally, animal models of SCI do not
include comorbidities commonly found in an aging population
such as cardiovascular disease, cancer, etc., which increases the
frailty and worsens outcomes of older populations by increasing
the frequency of adverse events and length of hospitalization
(Velanovich et al., 2013; Banaszek et al., 2020; Dicpinigaitis
et al., 2022). Correspondingly, frailty has been correlated as
a predictor of mortality in elderly individuals (Carlile et al.,
2022). Evidence from thoracoabdominal aortic aneurysm repair
indicates that paraplegia risk may be correlated with frailty
[using sarcopenia (core muscle loss) as a marker of frailty],
however, the extent to which age and frailty interact to affect SCI
outcomes remains understudied.

As previously noted, the average age of SCI in the US has
increased to 43 years old. The causes, spinal levels, and severity
of SCI have also changed over time with the most frequent
category of neurological injury being incomplete tetraplegia
(48.6% in the US since 2015) (NSCISC, 2022). In the US, the
leading cause of SCI across all age populations between 2015
and 2021 was motor vehicle accidents (37.7%), with falls as
the second leading cause (31.4%) (NSCISC, 2022). In persons
greater than 45 years old, falls are the primary cause of SCI
with similar findings in other countries (Toda et al., 2018;
NSCISC, 2020; Sun and Zhang, 2021). Particularly in older
persons, low speed/low impact falls (from standing) can result
in the most common type of incomplete SCI, CCS. Although
there is no clear, universally agreed-upon definition of CCS,
the clinical presentation includes a greater loss of function in
the arms and hands, relative to the lower extremities. Although
CCS occurs in younger persons due to high energy impact
injuries, in older persons this type of injury is caused by cervical
hyperextension from a fall where pre-existing cervical stenosis
is present (contributing to spinal cord compression) and is not
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always associated with spine fracture or dislocation (Avila and
Hurlbert, 2021; Ameer et al., 2022). CCS has traditionally been
considered to have a higher rate of recovery than other types
of SCI, however, a recent publication where individuals with
CCS were matched with non-CCS incomplete SCI (by severity
and neurological level of injury, age), demonstrated that CCS
individuals had less recovery compared with incomplete SCI
(Blasetti et al., 2020). This complicates our understanding of
how age impacts recovery following SCI, as a high percentage
of clinical SCI are cervical, incomplete, with a frequent
presentation of CCS, for which there is no animal model. It is
anticipated that the incidence of incomplete SCI will increase
over time due to trends in age and cause of SCI (Devivo, 2012).
This demographic shift will likely include a commensurate
increase in CCS, in an active, aging population, presenting
a potential confound in the translation of preclinical animal
studies to human SCI.

The difficulty in directly comparing outcomes between
age groups in humans likely contributes to conflicting reports
across retrospective studies examining age at the time of SCI
(Scivoletto et al., 2003; Furlan and Fehlings, 2009; Furlan, 2021).
For example, Furlan (2021) identified no significant differences
in function between older and younger populations 1-year
post-SCI from a re-evaluation of data from the first North
American Spinal Cord Injury Consortium (NASCIC) trials
on methylprednisolone (Bracken et al., 1985; Furlan, 2021).
In contrast, several other independent reports have identified
worse motor and sensory outcomes in individuals injured later
in life (Cifu et al., 1999a,b; Dai, 2001; Seel et al., 2001).

Findings from the Furlan (2021) NASCIC re-assessment
examined data from 306 participants treated with
methylprednisolone, including 39 females and 267 males
with an average age of 31 years old at the time of SCI. The
mean age of 31 at the time of SCI, published in 1985, pre-dates
the progressive shift toward older age at the time of SCI,
which is now approximately 43 years old (Bracken et al., 1985;
NSCISC, 2022). In the retrospective assessment, older age was
defined as 65 years old or older at the time of SCI. Functional
outcomes were determined using the change in NASCIS motor
scores [14 muscles assessed on a 6-grade scale ranging from 1
(normal function) to 6 (no contraction) (Bracken et al., 1985)]
obtained at 1-year post-injury from scores obtained at the time
of admission. Neurological recovery scores were adjusted for
confounders of sex, injury mechanism, ethnicity, level of SCI,
type of wound (open or closed), consciousness on admission,
and dose of methylprednisolone using multiple regression
analysis against age at the time of injury. Importantly, in this
report, there were only 13 individuals out of 306 participants in
the 65 years or older group (Furlan, 2021).

Furlan (2021) identified a significant positive correlation
between older age at the time of SCI and improved motor
scores at 1-year post-injury. While at first, this appears to
contradict pre-clinical studies that find worse outcomes with

older age (Gwak et al., 2004a; Genovese et al., 2006; Siegenthaler
et al., 2008a,b; Fenn et al., 2014; Hooshmand et al., 2014;
Zhang et al., 2015, 2016, 2019; Takano et al., 2017; von Leden
et al., 2017; Martín-López et al., 2021; Stewart et al., 2021b),
there are several important caveats to consider. First, it is
interesting to note that the original publication reported a
significant increase in mortality within 1-year of SCI among
individuals 50 years or older at the time of injury (Bracken
et al., 1985). This significantly increased mortality could have
introduced a selection bias preferencing individuals with more
robust recovery from injury since data on aged individuals who
died was not included when determining motor improvements
at 1 year. Next, a trend toward different injury mechanisms in
older individuals may indicate less severe injuries at the time of
SCI (Furlan et al., 2010). It should be noted, however, that in the
retrospective study injury severity scores (Frankel Grade scores)
were not significantly different at baseline between young and
aged groups (Furlan, 2021). Finally, and what has the most
potential relevance to the discussion below, is the potential for
methylprednisolone to have exerted an age-dependent effect,
conferring larger therapeutic benefit to older individuals. Due
to ethical concerns regarding withholding methylprednisolone
treatment during the NASCIC study, all individuals enrolled in
the study received treatment, no placebo treatment was given
(Bracken et al., 1985). Considering data were normalized to
baseline, observing an increase in motor recovery relative to
baseline with older age might be explained by age-dependent
differences in treatment efficacy (Furlan, 2021).

In contrast to Furlan (2021), several other reports associate
older age at the time of SCI with worse clinical outcomes as
measured by the American Spinal Injury Association (ASIA)
Impairment Scale (AIS), functional independence measures,
and/or capacity for over-ground locomotion (Bravo et al., 1996;
Cifu et al., 1999a,b; Dai, 2001; Seel et al., 2001; Coleman
and Geisler, 2004; Wilson et al., 2014; Oleson et al., 2016;
Brouwers et al., 2020; Engel-Haber et al., 2020). A more recent
meta-analysis of clinical reports collectively identified age as
a significant variable associated with worse neurological and
functional recovery (Kirshblum et al., 2021). Previously, Seel
et al. (2001) reported that rehabilitation performance measures
were worse with older age, often requiring increased lengths
of stay prior to hospital discharge. Part of the cause of this
functional disparity between ages may be due to reduced
muscular strength, independent of SCI, in the aging population;
a consideration for functional disparities after SCI regarding
both age and sex (Thomas and Grumbles, 2014). Age-associated
functional outcomes are also strongest after incomplete injuries
characterized as AIS B or C (Kirshblum et al., 2021), implicating
injury severity as a potential age-dependent caveat. It is
important to note that unlike Furlan (2021), not all studies
control for confounding variables such as injury mechanism,
baseline score, etc. (Dai, 2001; Furlan, 2021). Further, several
publications, after adjusting for these confounding variables,
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have not found age to be associated with worse outcomes or
reported weak relationships with age at the time of SCI and
functional recovery (Furlan et al., 2010; Wilson et al., 2014;
Furlan, 2021). Collectively, age does appear to be associated with
worse outcomes, but whether reduced neurological recovery
is a product of changing biological responses with aging or
differences in clinical scenarios cannot be extrapolated from
clinical reports.

Aging in animal models

Locomotor and sensory outcome
differences

Many caveats with interpreting clinical reports (i.e.,
mortality, injury type) can be addressed through controlled
modeling in animals. Comparing between younger and older
rodents in pre-clinical SCI models has elucidated several
underlying differences occurring with advancing age in the
pathology and recovery following SCI. Specifically, when injury
severity, anatomical location, and injury type are controlled
across age groups in rats and mice, older age is associated with
worse functional outcomes, even when comparing young adults
(3–4 months old) to middle-aged (12–14 month-old) rodents
(Gwak et al., 2004a; Genovese et al., 2006; Siegenthaler et al.,
2008a,b; Fenn et al., 2014; Hooshmand et al., 2014; Zhang
et al., 2015, 2016, 2019; Takano et al., 2017; von Leden et al.,
2017; Martín-López et al., 2021; Stewart et al., 2021b). The
ability to provide immediate and sustained care to reduce age-
associated mortality and limit selection bias in animals may
be a potential factor in animal studies. Further, animal studies
are not confounded by age-dependent differences in central
cord syndrome, which is not examined in most rodent models.
Indeed, the age-dependent recovery observed in animal models
is inconsistent with some clinical reports (Furlan and Fehlings,
2009; Furlan et al., 2010; Furlan, 2021).

An age-associated decrease in locomotor outcomes has
been replicated across labs and in both mice and rats.
In this review, we will not discuss differences between
neonatal/juvenile/pediatric and adult ages but will limit
discussion to differences between young-adult, middle-aged,
and elderly groups. The majority of reports from rodent studies
examining the effects of age at the time of SCI reproducibly
demonstrate that older age results in worse functional outcomes.
In rats, age-associated impairments in functional recovery have
been demonstrated using the Basso, Beattie, Bresnahan scale
of locomotor recovery (BBB) (Basso et al., 1995; Gwak et al.,
2004a,b; Genovese et al., 2006; Siegenthaler et al., 2008a,b;
Hooshmand et al., 2014; Roozbehi et al., 2015; von Leden et al.,
2017; Martín-López et al., 2021). Similar results are observed
in mice utilizing the Basso Mouse Scale (BMS) (Basso et al.,
2006; Kumamaru et al., 2012; Fenn et al., 2014; Zhang et al.,

2015, 2019; Takano et al., 2017; Stewart et al., 2021b). To date,
only three reports failed to detect differences across older age
(Nishi et al., 2020; Hook et al., 2022; Stewart et al., 2022b), one of
which utilized immunodeficient Rag2gamma(C) knockout mice
in cervical SCI, the implications for which will be discussed in
more detail below.

In addition to locomotor recovery, older age at the time
of SCI is associated with differences in sensory function in
rodents (Gwak et al., 2004b; Gaudet et al., 2021; Stewart et al.,
2022b). Use of the Hargreave’s test for thermal hypersensitivity
revealed that absolute values for paw withdrawal latency do not
differ between ages after SCI, however, there is a pre-existing
hypersensitivity with between older mice between 2- and 20-
months of age, making the change from uninjured conditions
larger in younger mice; importantly this finding was observed
in a second independent report between mice of 4- and 14-
month of age (Gaudet et al., 2021; Stewart et al., 2022b). In
contrast to thermal allodynia, mechanical hypersensitivity is not
different between 2- and 20-month mice at baseline but younger
mice exhibit a greater sensitivity at 1-week post-SCI which then
resolves and plateaus at approximately the same sensitivity as
20-month SCI-mice (Gaudet et al., 2021). While both evoked
thermal and mechanical hypersensitivity appear to indicate that
younger age is associated with larger changes in hypersensitivity
responses after SCI, Gaudet et al. (2021) also reported that 20-
month mice exhibit a greater frequency of behaviors associated
with spontaneous pain development. Self-severing, or autotomy,
occurred at a significantly greater frequency in 20-month,
compared to 2-month, mice (Gaudet et al., 2021). Collective
results from both mechanical and thermal sensitivity tests
suggest that younger, rather than older, mice experience larger
changes in hypersensitivity after SCI related to exogenously
evoked stimuli, while older mice exhibit a greater frequency
of behaviors associated with spontaneous pain (Gaudet et al.,
2021). Importantly, an earlier report identified that younger
adult mice, but not middle-aged mice, develop mechanical
hypersensitivity following spinal hemisection, validating that
spinal mechanisms persisting in younger mice may result in a
greater chance of developing SCI-induced pain (Gwak et al.,
2004b). These findings may be consistent with age-dependent
differences in the capacity for axon growth, plasticity, and
maladaptive plasticity, which may favor a larger response at
younger ages.

Plasticity and regeneration

Several studies identify that functional recovery is indeed
reduced in older rodents after SCI, however, the biological
mechanisms that underlie decreased recovery continue to be
explored. The aging central nervous system is well-known to
possess a decreased capacity for plasticity and regeneration,
particularly in the context of hippocampal memory formation
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(Isaev et al., 2019). Hippocampal neurogenesis declines with
age (Ahlenius et al., 2009). A decreased growth potential
of mature neurons has also been identified after peripheral
nerve axotomy with the speed of axon growth and the total
abundance of regenerating axons declining with advanced age
(Pestronk et al., 1980; Verdú et al., 2000; Kaneko et al.,
2021; Wagstaff et al., 2021). A reduction in trophic factor
and cytokine secretion, as well as mitigated intrinsic growth
responses contribute to a decreased regenerative potential of
peripheral nerves with aging (Stratton et al., 2020; Kaneko et al.,
2021; Wagstaff et al., 2021). The influence of aging on axonal
repair in the central nervous system has been recently reviewed
(Sutherland and Geoffroy, 2020) and will only be discussed
briefly below.

To date, there have only been three published reports
evaluating the effects of advanced age on regeneration after
SCI, with all three reports providing corroborating evidence
for observations in other neurological conditions (Jaerve et al.,
2011; Roozbehi et al., 2015; Geoffroy et al., 2016). Specifically,
all three studies found a decrease in axon growth with older age
(Jaerve et al., 2011; Roozbehi et al., 2015; Geoffroy et al., 2016).
Results after controlled thoracic transection provided the first
evidence that age-dependent decreases in plasticity play a major
role in functional recovery after SCI (Gwak et al., 2004a). Axon
plasticity and growth after SCI can include both shorter-distance
sprouting and long-distance regeneration (Cafferty et al., 2008).
There is an emerging understanding that different mechanisms
mediate long-distance regeneration relative to short-distance
sprouting (Geoffroy and Zheng, 2014). Age-dependent declines
in axonal growth have since been observed in SCI conditions
with and without interventions aiming to enhance regeneration
and sprouting. Both sprouting below the lesion and regeneration
of damaged axons are reduced with older age (Jaerve et al., 2011;
Roozbehi et al., 2015; Geoffroy et al., 2016).

Exploring the age-dependent effects on different
mechanisms of axon plasticity provides insight into the
role of age on SCI responses. For example, converging literature
identifies intracellular signaling through the mTor pathway as
essential for inducing long-distance axon regeneration (Park
et al., 2008; Liu et al., 2010; Danilov and Steward, 2015; Du et al.,
2015; Geoffroy et al., 2015). One strategy aimed at enhancing
mTor activity is through administering the chemokine stromal-
derived factor-1 (SDF-1), which acts on g-protein-coupled
receptors, CXCR4 and CXCR7 (Opatz et al., 2009). SDF-1
activates the PI3K/AKT pathway and leads to mTOR activation
(Dillenburg-Pilla et al., 2015). SDF-1 causes potent axon growth
in vivo after both optic nerve crush and SCI (Jaerve et al.,
2011, 2012a; Heskamp et al., 2013; Negro et al., 2017; Stewart
et al., 2017; Li et al., 2021). Jaerve et al. (2011) used SDF-1
to examine how aging differentially affects the potential for
sprouting and regeneration within the spinal cord after injury
(Jaerve et al., 2011). SDF-1 was infused into spinal cords after
a dorsal hemisection in young (9–14 weeks old) and older

(22–28 months) rats using osmotic pumps (Jaerve et al., 2011).
Without treatment, older rats had reduced sprouting of spared
serotonergic (5-HT), tyrosine hydroxylase (TH), and CGRP
fibers below SCI lesions. Similarly, although treatment with
SDF-1 resulted in more sprouting below the lesions of younger
rats, there was little effect of SDF-1 on axon sprouting in older
rats. In contrast to short-distance sprouting below the lesion,
SDF-1 did induce growth and regeneration of damaged 5-HT
and TH fibers into the lesion with no detectable differences
between ages. Corticospinal tract (CST) fibers did not grow into
or beyond the lesion but were found to sprout more in younger
rats rostral to the lesion in response to treatment (Jaerve et al.,
2011). Collectively, these data indicate that axons sustain a
comparable ability to regenerate, but not sprout, with older age.

Contrasting findings were reported by Geoffroy et al. (2016)
utilizing a PTEN knockout model to increase mTor activity
and induce axon growth of the CST (Geoffroy et al., 2016).
Geoffroy et al. (2016) knocked out PTEN from corticospinal
tract neurons at either P1, 4–6-week, 10–week, or 12–18 months
of age. They then performed T8 dorsal hemi-sections 4–
6 weeks later and evaluated CST regeneration at 6-week post-
injury. Increased age at the time of injury blunted axon
regeneration caudal to the lesion with 12–18-month mice
exhibiting no significant regeneration beyond the injury site.
In contrast, younger mice receiving PTEN KO at P1 or at 4–
6-week of age, then subsequently injured 4–6 weeks later, had
growth and regeneration caudal to the lesion. Geoffroy et al.
(2016) replicated an age-dependent decrease in regeneration
by evaluating effects of PTEN KO on a second spinal tract,
the rubrospinal tract, which is believed to have greater
regenerative potential (Geoffroy et al., 2016). Specifically, in this
experiment, 6-week-old and 8-month-old mice demonstrated
some regeneration caudal to the lesion after PTEN KO, with
6-week-old mice having significantly more regenerating fibers
caudal to the lesion and at further distances away from glial
boundaries (Geoffroy et al., 2016).

While both SDF-1 and PTEN knockout act to enhance the
intracellular mTor signaling pathway, mechanisms of action
differ between the two manipulations in the timing, duration,
and intensity of the effect. Specifically, a permanent PTEN
knockout likely induces a more sustained and intense growth
response, evidenced by the magnitude of regeneration across
the lesion, and may be more sensitive at detecting an age-
dependent decline in axon growth. Further, knocking out PTEN
exhibits an effect at the level of the soma which might exhibit
a stronger transcriptional effect compared to local infusion of
SDF-1 near the lesion. Alternatively, the discrepancy regarding
an age-dependent decline in regeneration between studies could
be explained either by species differences or in the assessment
of different fiber tracts. While the exact extent of how species
differences affect regenerative potential is unknown, mice do
exhibit a dense collagenous glial scar within the lesion center
compared to rats which form cystic cavitation and leave empty
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fluid filled spaces that are barriers to axon growth. Differences
in the scaring response suggests there may be critical differences
in the microenvironment affecting the potential for axon growth
and regeneration in a species-dependent manner.

The two studies also differed in the methods and fiber
tracks analyzed. Specifically, Jaerve et al. (2011) evaluated fibers
using immunohistochemical labeling, specifically being 5-HT,
TH, and CGRP axons, while Geoffroy et al. (2016) evaluated
motor neuron tracts requiring tract tracing, specifically the
rubrospinal and corticospinal tracts. While Jaerve et al. (2011)
did trace for corticospinal tract growth they were unable
to detect a significant regenerative effect into or beyond
the lesions, prohibiting analysis of regeneration of this fiber
tract. Regardless, both experiments provide evidence that axon
growth and plasticity are diminished with advancing age and
are less receptive to treatment approaches. Finally, it should
be noted that axotomized motor neurons within the cortex of
young and aged rats also display diverse transcriptional profiles
after SCI which likely plays a role in the different growth
responses to injury and intervention (Jaerve et al., 2012b).

Injury and inflammation

Spinal cord injury causes a robust intraspinal inflammatory
response consisting primarily of neutrophils, microglia, and
macrophages within the first week of injury. At later timepoints,
adaptive immune cells, e.g., b- and t-cells, infiltrate the injured
spinal cord. Fenn and colleagues were among the first to
provide evidence that older age at the time of injury (3-
month vs. 18-month) leads to an exacerbated intraspinal
inflammatory response. Specifically, we observed a loss of IL-4
receptor (IL-4R) on microglia and macrophages in 18-month-
old mice after SCI (Fenn et al., 2014). IL-4R signaling induces
an alternative, anti-inflammatory, macrophage phenotype that
enhances tissue repair and regeneration in vivo after SCI
(Kigerl et al., 2009; Gensel and Zhang, 2015). We observed
an age-associated shift of microglia and macrophages toward
a more pro-inflammatory phenotype with advancing age that
contributed to an exacerbated secondary injury response (Fenn
et al., 2014). Subsequently, we observed that older mice (4-
vs. 14-month) have an imbalance in inflammatory cytokines
surrounding the lesion, favoring a more pro-inflammatory (vs.
reparative) environment with advanced age (Zhang et al., 2015).
The pro-inflammatory cytokine, IL-12, and anti-inflammatory
cytokine, IL-10, are expressed in relatively equal proportions
intraspinally in older (14-month-old) SCI mice. In contrast, in
young mice (4-month-old), IL-10 expression levels significantly
increase over time and protein levels of IL-10 significantly
increase more in young vs. aged mice by 7 dpi within the lesion
(Zhang et al., 2015).

Older age at the time of injury is also associated with
increased recruitment of macrophages into the lesion in both

rats and mice (Hooshmand et al., 2014; Zhang et al., 2019;
Stewart et al., 2021a). We also observed that intraspinal
macrophages in 14-month mice produce significantly less anti-
inflammatory IL-10 and significantly more reactive oxygen
species (ROS) during the sub-acute stages of SCI relative to
macrophages in 4-month animals (Zhang et al., 2015, 2016,
2019). Indeed, older mice have larger lesions and accumulate
more oxidative stress by 7-days following T9 contusion SCI
(Zhang et al., 2015, 2016). Age-dependent increases in ROS
production are attributed to phagocytic cells from older animals
expressing higher abundances of NADPH Oxidase 2 (Nox2),
which generates the reactive oxygen species, superoxide, in
macrophages and microglia (Zhang et al., 2016; Stewart et al.,
2021a). Increases in Nox2 with age occurs in both mice and
rats and in both traumatic and non-traumatic SCI (Zhang
et al., 2016; von Leden et al., 2017; Michaels et al., 2020;
Stewart et al., 2021a). An accumulation of ROS end products
indicative of oxidative damage, 4-hydroxynonenal (4-HNE),
and 3-Nitrotyrosine (3-NT), are increased in older mice at
7-days after SCI (Zhang et al., 2016, 2019; Stewart et al.,
2021b), consistent with age-dependent changes in macrophage
activation and phenotype. When we targeted the age-dependent
increase in Nox2 using apocynin, a Nox inhibitor, we detected
a larger therapeutic response in middle-aged (14-month)
compared to adolescent (4-month) mice after SCI (Zhang
et al., 2019). Specifically, apocynin decreased oxidative stress
and intraspinal inflammation in an age-dependent manner
and improved locomotor outcomes only in 14-month mice.
These age-dependent inflammatory responses have therapeutic
implications for SCI and further demonstrate that both the
underlying biology of SCI as well as treatment efficacy change
with age.

Two other recently published manuscripts provide more
evidence highlighting the importance of inflammation in age-
dependent effects after SCI. First, Nishi et al. (2020) evaluated
how age and mouse strain affect functional outcomes after
SCI (Nishi et al., 2020). While the same lab had previously
reported an age-dependent decline in recovery in 18-month
compared to 3-month rats after cervical SCI (Hooshmand
et al., 2014), recovery was not affected after cervical SCI in
4- vs. 16-month Rag2gamma(C) knockout mice (Nishi et al.,
2020). Rag2gamma(C) knockout mice are immunodeficient in
elements of adaptive immunity, specifically having a loss of T-,
B-, and natural killer cells (Nishi et al., 2020), as well as reduced
serum IgG (Lee et al., 2018). While the role of infiltrating IgG in
the spinal cord acutely after SCI is not thoroughly understood,
it likely plays a role in binding to cellular debris to encourage
phagocytosis from macrophages (Kopper and Gensel, 2018). Of
interest, IgG increases within the spinal cords of wild-type mice
in an age- and sex-dependent manner after SCI (Stewart et al.,
2022a). Accordingly, Nishi and colleagues mention that the lack
of adaptive immune cells may have masked the age-dependent
pathophysiology and advocate for examinations of immune
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cell-age interactions in SCI (Nishi et al., 2020). The lack of age-
associated effects after SCI in immunodeficient mice further
implicates inflammation as a key regulator of age-associated SCI
pathophysiology.

Targeting inflammation by knockout out micro-RNA-155
(miR-155) has also been used as a strategy to determine
the effects of inflammatory signaling on pain development
in older age (2- vs. 20-month) animals after SCI (Gaudet
et al., 2021). miR-155 has been shown to regulate both
neuron growth and extension in vivo after SCI, as well
as attenuate pro-inflammatory signaling in macrophages and
mitigate macrophage accumulation within SCI lesions (Gaudet
et al., 2016). miR-155 knockout (KO) mice injured at 2 months
of age demonstrate an alleviation of hypersensitivity within
the first 2 weeks of SCI, whereas miR-155 KO mice injured
at 20 months of age do not differ from wild-type controls. In
contrast, miR-155 KO did mitigate an age-dependent increase
in mortality after SCI as well as an age-dependent development
of spontaneous pain. Because miR-155 KO also reduces lesion
sizes in adolescent mice (Gaudet et al., 2016), mitigation of
pain development might not be exclusively associated with
inflammatory modulation and could be attributed to sparing
of axons that control pain perception (Gaudet et al., 2021).
Regardless, miR-155 KO demonstrates that immune-associated
strategies aimed at mitigating pain can also display age-
dependent effects (Gaudet et al., 2021). The collective evidence
from several reports now implicates age-related changes
occurring throughout the inflammatory axis as maladaptive and
exacerbate the pathophysiology of SCI.

Mitochondrial function

Redox metabolism is known to change with advanced age
and resembles a shift toward a stronger reliance on glycolysis
for energy production, a term coined the Warburg effect which
was originally identified in cancer (Samudio et al., 2009; Burns
and Manda, 2017) and is emerging as a hallmark of age-
related differences in SCI (von Leden et al., 2019). Mitochondria
utilize proton gradients built up within the inner membranous
space to drive ATP production. Mitochondria are said to be
coupled when the electron transport chain produces a proton
gradient in the inner membranous space and when that gradient
increase necessitates an increase in ATP production. When
the mitochondrial membranes are permeable to protons, the
gradient dissipates and electron transport fails to increase
ATP production, which is termed an uncoupled response
(Berry et al., 2018). In an uncoupled mitochondrion, protons
produced from the electron transport chain do not contribute
to ATP production. Mitochondria regulate this proton gradient
through changing cellular respiratory rates and/or activating
mitochondrial uncoupling proteins which allow protons to flow
back into the mitochondrial matrix from the inner membrane
space (De Simone et al., 2015; Zhao et al., 2019).

While at first it may seem maladaptive to intentionally
uncouple mitochondria due to the suppressive effects on ATP
production, a proton gradient that is too strong induces
resistance to electron flow through the respiratory membrane
complexes and generates ROS in the form of superoxide (Berry
et al., 2018). When the resistance of electron transfer increases,
electrons are captured by electrophilic soluble oxygen to form
superoxide instead of reducing their energy state through the
electron transport chain to form CO2 (Berry et al., 2018).

Physiological coupling of mitochondria is regulated on a
spectrum to mitigate and control free-radical formation at
the balance of maintaining cellular energy demands. Older
mitochondria exist in a more uncoupled state relative to younger
mice, and consequently, produce less ATP for cellular energy
(Conley et al., 2007; Chistiakov et al., 2014; Stefanatos and
Sanz, 2018). Paradoxically, despite observing mild uncoupling
with older age at rest, older mitochondria generate more
ROS, which likely underlies the sustained mild uncoupling
effect (Stefanatos and Sanz, 2018). Observing an increase
in ROS production despite being more uncoupled suggests
that underlying dysfunction accrues in mitochondria with
advanced age. Indeed, older mitochondria are less capable of
buffering cytosolic calcium before opening the mitochondrial
permeability transition pore (MPTP) which is known to activate
caspase cascades and initiate apoptosis (Mather and Rottenberg,
2000; Paradies et al., 2013). These findings suggest that older
mice are more susceptible to both an increase in mitochondrial
ROS production and exhibit decreased capacity for buffering
cytosolic calcium before opening the MPTP, of which increased
intracellular calcium is known to participate in excitotoxicity
and secondary injury after SCI.

In vivo delivery of small doses of the pharmacological
uncoupler, 2,4-dinitrophenol (DNP) can induce a mild-
uncoupling response that aids in reducing ROS produced by
mitochondria (Jin et al., 2004; Pandya et al., 2007; Patel et al.,
2009; da Costa et al., 2010; Geisler et al., 2016; Stewart et al.,
2021b; Figure 1F). Mitochondrial ROS production is believed
to be a major source of free-radical damage after neurotrauma
and treating mice and rats with DNP to mildly uncouple
mitochondria is neuroprotective in rats with SCI and TBI as
well as mice with TBI (Jin et al., 2004; Pandya et al., 2007; Patel
et al., 2009). Our first report using DNP to treat SCI in mice,
rather than rats, indicated toxic effects on younger mice and
therapeutic effects on middle-aged mice (Stewart et al., 2021b).
Specifically, three separate experiments identified that a very
mild dose of DNP (1.0 mg/kg/day) exerted reciprocal effects
between younger (4-month) and older (14-month) mice after
SCI in several outcomes including locomotor abilities, tissue
sparing, and mitochondrial function (Stewart et al., 2021b).
Because DNP not only mitigates ROS production, but also
lowers calcium buffering by mitochondria (Tsai et al., 1997;
Korde et al., 2005), there are several potential reasons that
could account for an age-divergent response to uncoupling
(Stewart et al., 2021b). Regardless, the important take-home
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message is that a similar dose of the same drug, DNP in
this experiment, had opposite effects on outcomes that were
dependent upon age at the time of SCI (Stewart et al., 2021b).
This study has provided a profound example of why including
age as a biological variable either prior to clinical trials or in
analyzing findings from clinical trials is important for defining
populations that may be sensitive to treatment effects.

Redox metabolism

Mitigating free-radical damage has been an emphasis
for treating acute SCI for several decades (Braughler and
Hall, 1982, 1983; Anderson et al., 1985; Bracken et al.,
1997). Indeed, the anti-inflammatory and antioxidant effects
of methylprednisolone established a rich history of improving
outcomes in animal models of SCI, and to a more controversial
extent, in humans (Anderson et al., 1985; Bracken et al.,
1997; Hall, 2016). Numerous studies identify increases in ROS
production and subsequent damage with older age at the time
of SCI in rodents (Genovese et al., 2006; Zhang et al., 2016,
2019; von Leden et al., 2017; Stewart et al., 2021b, 2022b).
Several techniques have been used to better understand ROS
accumulation with older age. First, immunological labels against
downstream products of ROS damage, 4-HNE and 3-NT, are
upregulated with age at 7-dpi in mouse spinal cord sections
and homogenates (Zhang et al., 2016; Stewart et al., 2021b)
and up to 30-dpi in rat spinal cord homogenates (von Leden
et al., 2017). While evidence of an age-dependent ROS accrual is
found at 7-dpi in mice, neither 4-HNE or 3-NT are upregulated
in an age-dependent manner at 3-dpi (Zhang et al., 2016;
Stewart et al., 2022b). The observation of delayed age-dependent
oxidative damage between 3- and 7-dpi implicates infiltrating
macrophages as a facilitator of ROS damage with older age
(Zhang et al., 2019). After SCI, macrophages emerge at 3-dpi,
peak between 7- and 14-dpi, and persist chronically after injury
(Beck et al., 2010).

In addition to immunological labeling to detect oxidative
damage, systemic delivery of dihydroethidium (DHE), a dye
sensitive to superoxide formation, reveals an age-dependent
increase in active ROS production at both 3- and 7-dpi (Zhang
et al., 2016). DHE is a fluorescent dye that undergoes a red
spectral shift upon reacting with superoxide and differs from
immunological labeling by being an indicator of active, ongoing,
ROS production rather than an accumulation of end products
(Peshavariya et al., 2007). Using DHE, we revealed that the
largest percentage of cells in the spinal cord oxidizing DHE
at 3-dpi were macrophages or microglia (Zhang et al., 2016).
This observation is consistent with our subsequent observations
of an age-dependent increase in Nox2 within macrophages
and microglia (Zhang et al., 2016, 2019; Stewart et al.,
2021a) and strengthens the argument that an age-dependent
increase in ROS damage is caused by altered macrophage

activation. Reports as to whether macrophages infiltrate in
greater number after SCI at older ages are inconsistent
(Hooshmand et al., 2014; von Leden et al., 2017; Zhang et al.,
2019; Furlan et al., 2020; Stewart et al., 2021a; Li et al.,
2022), however, all studies evaluating differences in macrophage
physiology with age identify that older macrophages present
with phenotype characteristics of greater ROS production after
SCI (Hooshmand et al., 2014; von Leden et al., 2017; Zhang
et al., 2019; Stewart et al., 2021a; Li et al., 2022). Taken
together, collective data has identified ROS as an age-dependent
contributor to SCI pathophysiology.

While the capacity to defend against free radicals is quite
complex, one major cellular pathway, the glutathione (GSH)
system, has been investigated for its known changes occurring
with age (Jones et al., 2002; Liu, 2002; Ghosh et al., 2014;
Ferguson and Bridge, 2016). Cellular GSH regulation utilizes a
series of GSH peroxidases (Gpx) to sequester different types of
free radicals. GSH is a re-usable tripeptide antioxidant that is
used as a substrate by Gpx to reduce radicals and is recycled back
into a usable form by GSH reductase at the expense of NADPH.
Advanced age diminishes cellular levels of both GSH as well as
the availability of its amino-acid constituent, cysteine, within the
plasma (Jones et al., 2002; Liu, 2002; Ghosh et al., 2014; Ferguson
and Bridge, 2016). The ability to produce and maintain adequate
cellular GSH levels is believed to be bottlenecked by either
the availability of its cysteine substrate or the availability of
the enzyme responsible for the first of two ligation reactions:
glutamate-cysteine ligase (GCL) (Griffith, 1999; Lu, 2009). Both
GSH and GCL abundance decrease with age in other organ
systems (Liu, 2002; Ghosh et al., 2014; Ferguson and Bridge,
2016). Further, both GSH and GCL activity diminishes following
SCI. We recently reported that GSH does indeed diminish
with older age (4- vs. 14-month mice) within the spinal cord
independent of injury, identifying a reduced capacity for older
rodents to defend against oxidative stress after SCI (Stewart
et al., 2022b).

Glutathione depletion after SCI occurs as early as 24-h post-
SCI and remains depleted for up to 72-h, and likely longer, with
greater decreases at 72- compared to 24-h post-injury (Patel
et al., 2014; Stewart et al., 2022b). Interestingly, however, 14-
month mice did not have a consistent decrease in GSH after
SCI, likely a consequence of having pre-depleted levels of GSH
in uninjured conditions (Stewart et al., 2022b). Gpx activity
levels in 4-, but not 14-month, mice is significantly increased
in response to SCI (Stewart et al., 2022b). In contrast, 14-
month mice have an increase in Gpx activity independent of
SCI (Stewart et al., 2022b), likely as a compensatory mechanism
responding to increased basal levels of ROS production with
advanced age within the spinal cord (von Leden et al., 2017).
Taken together, an age-dependent decrease in GSH likely
sensitizes older mice to oxidative stress acutely after spinal
trauma (Stewart et al., 2022b).
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FIGURE 1

Theoretical models of how age can affect response to treatment. Treatments targeting molecular mechanisms often exert downstream
influence on several biological targets. Downstream effectors of a therapeutic intervention can exert both permissive and detrimental effects
that can compete to determine the net outcome of a treatment. Aging can change protein abundances of diverse molecular pathways as well
as affect cellular responses to injury. Panels (A–F) represent some simplified theoretical models of how changes occurring with age can affect
net responses to treatment. (A) For example, if a reparative downstream effector of an interventions biological target is downregulated with age,
older systems might not respond with as large of a therapeutic response. (B) Similarly, if a detrimental effector of the intervention is upregulated
with age, the net effects might appear smaller in an older animal or disappear altogether. (C) Further, the abundance of the biological target
itself could be differentially regulated with age and affect treatment efficacy. (D) It could also be possible for the net balance of a treatment to
change from a beneficial effect to a toxic effect if detrimental downstream regulators are upregulated beyond the effectors that might confer a
treatment benefit. (E) Or finally, the abundance of the beneficial biological target could be downregulated with age to a point where detrimental
effects outweigh a therapeutic effect. In the case of a discussed example above (see Section “Mitochondrial function”), treating 4- and
14-month mice with a mild mitochondrial uncoupler exerted age-divergent effects. (F) While it is unknown exactly why the age divergent
response was observed, it could be possible that the duality of the treatment response shifted toward conferring a beneficial outcome in older
mice. Knowing that older mitochondria produce more ROS and less ATP at rest, it remains possible that older mice exhibited a greater decrease
in ROS sufficient to outweigh the detrimental effects of reduced ATP production while uncoupled. This figure was created with BioRender.com.
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Targeting GSH dysfunction after SCI has been performed by
providing cysteine analogs such as n-acetylcysteine (NAC) or a
more recently developed n-acetylcysteine amide (NACA) which
has better bioavailability within the spinal cord (Kamencic
et al., 2001; Hanci et al., 2010; Karalija et al., 2012, 2014;
Patel et al., 2014; Guo et al., 2015; Olakowska et al., 2017;
Stewart et al., 2022b). Treating SCI in rats with NAC or NACA
restores cellular levels of GSH, protects against oxidative stress,
and improves mitochondrial, behavioral, and histopathological
outcomes (Kamencic et al., 2001; Hanci et al., 2010; Karalija
et al., 2012, 2014; Patel et al., 2014; Guo et al., 2015; Olakowska
et al., 2017). Owing to a pre-existing decrease in GSH with older
age, as well as evidence of more ROS damage accumulating
in older SCI-mice (Zhang et al., 2016, 2019; Stewart et al.,
2021b), we predicted that NACA treatment would have a
robust protective effect in 14- compared to 4-month mice.
Contrary to this hypothesis, 14-month mice treated with
NACA trended toward worse functional and histopathological
outcomes, despite observing a significant increase in GSH
and an improved redox ratio (GSH/GSSG) (Stewart et al.,
2022b). While the mechanisms underlying these trends remain
unknown, this work provides yet another example of how
treatment responses can be unpredictable at different ages, even
when the biological underpinnings change with age in a manner
that point to a seemingly obvious outcome.

Mortality and health differences

While the effects of aging on inflammation, mitochondrial
function, and redox metabolism have been well-characterized
in many physiological systems, there are other consequential
interactions between age and SCI not directly related to central
pathology. Similar to clinical findings, older mice experience
greater mortality after SCI (Genovese et al., 2006; Takano et al.,
2017; Stewart et al., 2020; Gaudet et al., 2021; Martín-López et al.,
2021). Findings from several independent laboratories indicate
that older mice die more frequently compared to younger mice
within weeks following injury (Genovese et al., 2006; Takano
et al., 2017; Stewart et al., 2020; Gaudet et al., 2021; Martín-López
et al., 2021). More intriguingly, older male mice experience a
higher mortality compared to older females at 14-months of age
(Stewart et al., 2020). Clinical reports are similar, finding that
either advanced age or being male is associated with increased
mortality within a year post-SCI (Furlan and Fehlings, 2009;
Furlan, 2021). The reasons for increased mortality with age in
humans are likely multifaceted and difficult to model in rodents
(as discussed in the next paragraph). Even in rodent models
where comorbidities can be controlled, the reason for this age-
and sex-dependent mortality remains unknown.

The consequences of being older at the time of injury are
not just associated with an increase in unexpected death but
are also associated with other measures of morbidity such as

weight loss. Older rats and mice lose more weight after SCI
as a percentage of body weight compared to younger rats and
mice (Siegenthaler et al., 2008b; Stewart et al., 2020). Notably,
weight changes in animal models follow a different trajectory
compared to clinical populations and may be a better metric
of morbidity in animal models. Both weight loss and gain are
observed in clinical populations depending on several factors
potentially affected by mobility and rehabilitation (Powell et al.,
2017). Where-as total weight loss may not significantly differ
between ages after SCI in humans (Powell et al., 2017), older age
has been associated with a shift toward less lean muscle mass and
more body fat distribution (Spungen et al., 2003).

The cause of increased mortality in older male mice remains
unknown, but our observations point to a potential hematologic
contributor. We recently reported that 14-month male mice
appeared colder to the touch in the days following SCI and
that 14-month male mice had noticeable less red blood cells
(RBCs) in the blood after spinning down plasma compared
to 4-month mice (Stewart et al., 2020). SCI induced a sex-
by-age interaction in the RBC/Plasma ratio when normalized
to sham-injured controls with ratios significantly decreased in
older 14-month male mice by 28-dpi relative to younger 4-
month male mice after injury. When evaluating the effects of
aging alone on hematopoiesis a few studies have corroborated
these findings. Male mice are reported to have a significant
decrease in hematopoiesis during middle age whereas females
do not (So et al., 2020). Anemia is reported in middle-aged
male mice independent of SCI with the effects profound enough
that the authors proposed using the aged C57BL/6 male mice
as a model for anemia (Guo et al., 2014). Whether this age-
and sex-dependent decrease in RBCs is relevant to the observed
mortality remains unknown, but does point to a potential
systemic contribution to outcome differences that change with
age, and most importantly in a sex-dependent manner after SCI.

Finally, a recent study by Hook et al. (2022) identified that
bone volumes decrease in an age-dependent manner. Both male
and female mice experience a loss of bone volume with aging
alone (2–3 vs. 20–23 months), however, only younger mice
have a compounding loss of bone volume after SCI. While SCI
did not compound an age-dependent loss in bone volumes,
Hook et al. (2022) emphasize that the significant loss of bone
volumes independent of injury in older mice could already be
approaching a floor effect, thus prohibiting the identification of
an SCI-induced decrease. An important emphasis in the study
by Hook et al. (2022) is that older mice did not present with
worse functional outcomes. While only a few reports have not
identified an effect of aging on motor outcomes (Nishi et al.,
2020; Hook et al., 2022; Stewart et al., 2022b), in the study by
Hook et al. (2022), a lack of functional differences presented
a unique opportunity to understand that systemic effects of
SCI, rather than functional ability/activity or weight supporting,
might underly the bone loss at younger ages (Hook et al., 2022).
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Male and females do not age the same

While work including age or sex as a biological variable
is amassing, it remains important to recognize that males
and females do not biologically age the same. The influence
of sex hormones and how they change with age can give
rise to reciprocal effects on several biological processes. For
example, estradiol, which is believed to exert neuroprotective
effects in SCI, sharply declines during menopause in humans
(Kachadroka et al., 2010; Koebele and Bimonte-Nelson, 2016;
Stewart et al., 2020). Not only is this hormonal trajectory
unique to females, but it also does not occur to the same
extent in rodents. In contrast to humans, mice, and rats
experience only a small decrease in estradiol relative to the
average plasma estradiol in younger rodents (approximately
75% of average) (Lu et al., 1979; Dubal et al., 2012), but maintain
a chronic retention of estradiol after reproductive senescence
(Koebele and Bimonte-Nelson, 2016; Stewart et al., 2020).
Young female rodents undergo normal cycling of the estrus
cycle and experience a corresponding cycling of plasma estradiol
levels (Lu et al., 1979). In contrast, reproductive senescent
rodents sustain a chronic estrous phase and corresponds to
a sustained maintenance of estradiol in the blood (Lu et al.,
1979). Depending on the cycle stage in younger rodents and
the age of the older comparison, the sustained estradiol levels
in reproductive senescent rodents may be higher or lower
compared to younger rodents which increases the challenges
with comparing across ages (Lu et al., 1979). It is therefore
important to acknowledge that animal models focused on
elucidating the effects of aging can be difficult to extrapolate
to the human condition, particularly if only female rodents
are utilized.

Similar to humans, testosterone levels in rodents decreases
with advancing age (Machida et al., 1981). While the role of
testosterone on SCI injury and recovery is poorly understood,
there is evidence that testosterone may play a neurotoxic role
(Hauben et al., 2002). Specifically, castration of mice and rats
prior to SCI or delivery of a testosterone antagonist both
resulted in improvements in motor recovery in males after
SCI. It therefore may be possible for an age-related decline in
testosterone to be mildly neuroprotective within the injured
spinal cord. In contrast, however, a decline in testosterone with
advancing age is associated with reduced erythropoiesis which
leads to an increase in anemia in older mice (Guo et al., 2014),
and may account for an increased mortality found at older
ages in rodents. Ultimately the effects of decreased testosterone
with age on the SCI central or peripheral pathology is not
well-understood.

Thus far, we have identified several sex-by-age interactions
which validate that some age-dependent injury responses are
sex-specific. Specifically, the example provided above that
identified a sex-by-age interaction of RBC/Plasma ratio is
indicative of how aging can differentially affect outcomes in

a sex-specific manner (Stewart et al., 2020). Further, we and
others have previously reported that male mice have an early
acute proliferation of microglia within and surrounding both
SCI and TBI lesions (Doran et al., 2019; Stewart et al., 2021a),
however, this sex difference disappears in middle-age (Stewart
et al., 2021a). Further, IgG which infiltrates the spinal cord
following SCI follows an age- and sex-dependency with 14-
month female mice having a significantly larger increase with
older age compared to male mice (Stewart et al., 2022a).
Although additional studies are needed to evaluate sex-by-age
interactions in animal models of SCI, these three examples
highlight that the effects of aging may not be generalizable
across sexes.

Complications with investigating age
as a biological variable in animal
models

While a consensus across several labs has concluded that
older age reduces functional recovery after SCI in rodents,
it remains important to highlight a few potential caveats
that exist in animal modeling. First, it is impossible to test
the same cohort of mice at two different ages at the same
time, resulting in the use of different cohorts to represent
differences in age. In some cases, the challenge associated with
obtaining older mice has resulted in experimental strategies
which utilize either retired breeders from animal colonies or
the use of mixed populations of young and old mice from
different colonies such as those purchased from the Jackson
laboratories, Charles River, and the National Institute of Aging
(NIA) aged animal repository. Utilizing animals from different
colonies has an inherent potential to influence the aging process
and SCI pathophysiology in unanticipated ways. For example,
the C57BL/6 mouse lines have developed different but known
mutations within the Charles River and Jackson Laboratory
colonies. C57BL/6N mice from Charles River carry a recessive
mutation in the Crb1 gene known to induce ocular lesions
that impair visual perception in homozygous mice from the
breeding colony (Mattapallil et al., 2012). In contrast, C57BL/6J
mice from the Jackson Laboratory carry a mutation in the
nicotinamide (NAD) nucleotide transhydrogenase (NnT) gene
which induces impaired glucose metabolism (Ripoll et al., 2012;
Gameiro et al., 2013), and affects inflammatory macrophage
phenotypes (Ripoll et al., 2012; Fontaine and Davis, 2016).
Importantly, however, while the C57BL/6 mouse colony from
NIA is maintained by Charles River, the colony is separate
from the Charles River mice and originated from the Jackson
Laboratory C57BL/6J strain. This provides one example of how
matching cohorts appropriately can be challenging in aging
studies. Regardless, aging has been a predictor of worse recovery
across all age-matching strategies.
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Another complication with including different ages is the
role of anatomical growth both of the animal as a whole, as
well as the spinal cord in particular. Mice and rats gain weight
with age, which can confound the interpretation or analysis of
results. Of significant interest is an increase in spinal cord size
and diameter with aging (Hooshmand et al., 2014; Stewart et al.,
2021a,b). Fourteen months mice have a spinal cord of up to
1.4x the diameter of a 4-month mouse which adds challenges
to interpreting outcomes. For example, 14-month mice have
significantly larger lesions compared to 4-month mice after SCI,
but when data is normalized to a percent of total tissue the
differences between ages is reduced (Hooshmand et al., 2014).
In this situation, the same injury force manifests in a larger total
area of lesioned tissue in older mice, but the magnitude of an
age-dependent effect is reduced when considering proportional
differences in size. The size difference of the spinal cord has the
potential to affect other outcomes as well, such as evaluating for
inflammatory cells within or surrounding the lesion (Li et al.,
2022). For example, event counts obtained from flow cytometry
might represent more total tissue obtained from older mice even
if the length of tissue obtained was held consistent. Evaluation
of cells using stereological approaches to obtain a cell count
density per-cubic area would normalize outcomes but could also
be compromised by how data is normalized. Normalizing to
lesion area might not provide the most meaningful outcomes,
particularly if one would not expect cell densities to differ
within the immediate lesioned environment. Normalizing cell
counts to total section area might provide a better comparative
assessment between two age groups as opposed to limiting
assessments within the lesion or absolute counts. Regardless of
the details, studying age as a biological variable is complicated
by nuanced differences that are not readily apparent on a first-
glance analysis of data, such as an age-dependent accumulation
of auto-fluorescent lipofuscin in macrophages that can affect
immunohistochemical analyses (Vida et al., 2017).

Baseline differences are not simply limited to anatomical
discrepancies that develop with aging. Baseline differences in
functional outcomes, such as sensory thresholds and measures
of forelimb strength, are reported to decline with older ages in
uninjured rodents (Gaudet et al., 2021; Stewart et al., 2022b).
In three separate studies, two evaluating thermal sensitivity and
one forelimb strength, older mice had lower baseline values
prior to SCI but identical absolute values compared to younger
mice after injury (Nishi et al., 2020; Gaudet et al., 2021; Stewart
et al., 2022b). If interpreting data as an absolute value, there is
no difference between ages in thermal sensitivity of the hind
paws after thoracic SCI, or strength of the ipsilateral forepaw
after cervical hemi-section. If these values were interpreted as a
percent change from baseline, it would appear that younger mice
had a larger proportional loss. It becomes difficult to extrapolate
these outcomes to clinical relevance when this age-dependent
effect was driven by differences at baseline. Specifically, it is

difficult to answer whether absolute values or percent change
from baseline are the most meaningful outcome to consider.

Finally, while mortality can be mitigated to a degree in
animal models, as reported above, several reports have detected
an increased early death of mice and rats after SCI at older
ages (Genovese et al., 2006; Takano et al., 2017; Stewart et al.,
2020; Gaudet et al., 2021; Martín-López et al., 2021). Observing
differences in mortality does potentially introduce a selection
bias by allowing successful data collection only from the most
robust older animals. Overall, while it is possible to control
and account for many confounding variables introduced by
including age as a biological variable in pre-clinical SCI studies,
there are still important considerations for evaluating age and
appropriately interpreting obtained data.

Discussion

To summarize key findings from this literature review, age
as a biological variable effects SCI injury and recovery processes
as well as responses to treatments in often unpredictable
ways. The average age at time of injury has increased to a
mean age of 43 which creates a need to better understand
the role of age in the SCI pathophysiology. There are several
differences in the etiology of SCI between younger and older
clinical demographics, the most pronounced of which is the
primary mode of injury is caused by a higher prevalence
of slip-and-fall accidents at older age. Slip-and-fall accidents
are hallmarked by less severe conditions, often manifesting
in central cord syndrome-like pathology. Differences in the
primary mechanism of injury and/or severity of the initial
insult makes comparing outcomes throughout the spectrum
of age challenging. Indeed, several clinical reports implicate
older age at the time of SCI as a variable which negatively
impacts recovery, however after accounting for confounding
variables, the impacts of age are less clear. The use of
animal models to better understand the recovery potential
throughout the spectrum of age has reproducibly determined
that older age limits the recovery of motor functions after
SCI. Mechanisms underlying a diminished functional recovery
after SCI at older ages have implicated a reduced capacity
for axon growth and regeneration in both non-intervened
and intervened conditions, as well as more severe secondary
injury cascades. Aging affects the acute pathophysiology of
SCI through changes occurring at the level of inflammation
as well as subcellular microenvironments. Macrophages which
infiltrate the lesion after SCI display more aggressive and pro-
inflammatory phenotypes that generate more reactive oxygen
species at older ages. Within the cell, mitochondria accumulate
age-related dysfunctions even prior to SCI that result in the
generation of more oxidative stress as well as a reduced capacity
to buffer cytosolic calcium. Oxidative damage is increased in the
sub-acute stages of SCI at older ages, which can be explained
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likely by a combination of both an increase in the production of
reactive oxygen species and a decrease in antioxidant defense.
Most intriguingly, treating older mice after SCI with several
antioxidant-based strategies has resulted in outcomes which
would either be predictive based on the underlying biology,
or completely counterintuitive to the logical hypothesis. The
examples provided in this review emphasize an emerging pre-
clinical notion that age at time of SCI can unpredictably affect
treatment responses.

Conclusion

Using animal models of SCI, we have identified a precedence
for considering age as a biological variable in both pre-clinical
and clinical research studies aiming to develop treatment
approaches. The underlying pathophysiology of SCI changes
with age in meaningful ways and treating those biological
maladaptation’s yields unpredictable results. We have, thus
far, identified treatment approaches that display larger and
smaller treatment effects in older animals, as well as opposite
effects to those observed in younger rodent counterparts.
While we elucidate how aging affects different elements of
the pathophysiology of SCI, we are finding that treatment
approaches might not act the same throughout the spectrum
of age. Most interventions acting on biological targets often
have multiple effects, some beneficial to recovery and others
detrimental, and changing the balance of these nuanced effects
can influence the outcomes of treatment efforts. It is not difficult
to imagine models in which a single molecular target can both
promote recovery and damage, and to identify how changes in
a system with older age can alter the net response to treatment
(Figure 1). Following this review, we propose that therapeutic
treatments should be examined across the spectrum of age
in pre-clinical models prior to investing time and resources
into human investigations. Results from animal testing will re-
enforce clinical trial design by providing insights into which
age ranges are most susceptible to experiencing a benefit from
treatment, while simultaneously helping to avoid potential
adverse outcomes that can hurt both the clinical trial success
as well as individuals. The pre-clinical findings reviewed above
make an argument for a need to include age as a biological
variable in clinical research design and interpretation, at the

very least by using animal models to guide the age inclusivity.
Beyond the implications to clinical research, emerging evidence
in basic science is supporting the idea that treatment efforts
deemed marginal or insignificant in young rodent models may
potentially exert a more significant effect at older ages, and
therefore can implicate a re-evaluation of treatment efforts
in older animal models. Collectively, work highlighted above
emphasizes the need to include age as a biological variable for
emerging treatment approaches to help more accurately predict
safety and efficacy of therapeutic advances toward clinical trials.
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