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ABSTRACT 
 

In this paper, the spatial measurement model is introduced into the environmental Kuznets curve to 
investigate the impact of income on household electric carbon emissions. The spatial correlation 
diagnosis was made by using Moran scatterplot and Moran index. The results of spatial error model 
show that the environmental Kuznets curve of household electric carbon emissions is inverted N-
shaped carve. The maximum and minimum values of environmental Kuznets curve are per capita 
real GDP of RMB 10198 Yuan and RMB 44355 Yuan (at constant price in 2005). It means that the 
per capita household electric carbon emissions are still on the rise in most provinces of China. 
 

 

Keywords: Household electric carbon emission; environmental Kuznets curve; spatial measurement 
model. 

 

1. INTRODUCTION 
 

The entry into force of the Kyoto protocol in 2005, 
the Copenhagen climate conference in 2009 and 
the formulation of the Paris agreement in 2016 

revealed that all countries in the world have paid 
great attention to the issue of climate change [1-
3]. At present, greenhouse gases, such as 
carbon dioxide, is a key factor leading to climate 
change. Energy conservation and emission 
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reduction is an urgent need to cope with global 
climate change and an inevitable choice to build 
a resource-conserving and environment-friendly 
society.  
 
Along with the economic growth and the 
improvement of residents' living standards, the 
household electricity consumption continues to 
grow rapidly, accounting for an increasing 
proportion of the electricity consumption of the 
whole society. According to the data of electricity 
consumption [4], electricity consumption reached 
5919.8 billion kWh, up by 5.0% year on year; 
Urban and rural residents consumed electricity of 
805.4 billion kWh, up 10.8% year on year. The 
proportion of household electricity consumption 
on the total electricity consumption is only slightly 
more than 13%, while that of developed 
countries is about 20%. At the same time, 
through the horizontal comparison of the data of 
per capita household electricity consumption in 
various countries in 2015, the per capita 
household electricity consumption in most 
developed countries is 1000~4000 kWh, and the 
per capita household electricity consumption in 
the United States and Canada has reached 4486 
kWh and 4617 kWh respectively. However, 
China's per capita household electricity 
consumption is 529 kWh, which is about 1/9 that 
of the United States and Canada and far lower 
than the level of developed countries. Through 
the lateral comparison of the data of per capita 
household electricity consumption in various 
provinces of China in 2015, Fujian ranked first 
with per capita household electricity consumption 
of 898.57 kWh; per capita household electricity 
consumption of other developed provinces and 
cities is more than 700 kWh, such as Beijing, 
Shanghai, Zhejiang and Guangdong; that is 
relatively low in most of the less developed 
provinces (such as Xinjiang, Qinghai, Ningxia 
and Gansu), which is under 400 kWh; that is 
400~700 kWh basically in other provinces. That 
means there is still huge room for growth. So 
household electricity carbon emissions cannot be 
ignored in order to reduce carbon emissions. 

 
Income is one of the main driving factors of 
household electricity consumption, and the 
difference in household electricity consumption 
between different regions can be explained by 
the income gap between China and developed 
countries or among 30 provinces. Countries or 
regions with higher economic development tend 
to have higher per capita household electricity 
consumption. For developed economies, the per 
capita energy consumption basically shows an 

inverted u-shaped pattern [5]. Given the trend of 
increasing income, will per capita household 
electricity carbon emissions continue to grow in 
China or will they start to decline when the 
income reaches a certain level? If there is a 
turning point, where is the turning point? In order 
to answer these questions, the current general 
method is the empirical research of the 
environmental Kuznets curve (EKC) to judge 
whether and when the pollution peak exists. It is 
helpful for the government to make more 
reasonable policies on energy conservation and 
emission reduction to understand the current 
situation of carbon emission from household 
electricity in China. 
 

2. LITERATURE REVIEW 
 
EKC theory originated from the study on the 
relationship between atmospheric environment 
and per capita income in North American Free 
Trade Agreement (NAFTA) [6]. This study found 
that there was a significant inverted U-shaped 
curve relationship between smog, suspended 
matter and per capita income. Later, Panayotou 
[7] studied the relationship between different 
environmental pollutants and income levels 
based on Grossman and Krueger’s study, and 
found that there was also an inverted U-shaped 
curve relationship between the two, which was 
called the environmental Kuznets curve (EKC). 
EKC theory is an empirical hypothesis, and the 
related researches mainly focus on the empirical 
aspects. EKC theory assumes that 
environmental quality will deteriorate with income 
growth, but environmental quality will improve 
with income growth when income reaches a 
certain level. In essence, the EKC theory reflects 
the process of transforming the economic 
development model with high energy 
consumption and high pollution into a resource-
conserving and environment-friendly one, 
indicating that the economic growth target is 
beneficial in the long run.  
 
In the context of global warming, more and more 
Chinese scholars have combined carbon 
emission and EKC theory to discuss. Some 
studies analyzed the total national carbon 
emissions, such as Hu et al. [8]. Based on EKC 
theory, they built the factor decomposition model 
of carbon emissions in China to analyze the 
impact of economic scale and other factors on 
carbon emissions, and found that there was an 
inverted N-shaped curve relationship between 
carbon emissions and economic growth. There 
are also some studies that analyze the carbon 
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emissions of a certain industry or department in a 
certain region. For example, Yan et al. [9] found 
an inverted N-shaped curve relationship between 
the carbon emissions of the construction industry 
in Guangdong province and the per capita output 
value of the construction industry based on the 
EKC. Tian and Xie  [10] found that China's 
agricultural per capita carbon dioxide emissions 
and per capita GNP showed an inverted U-
shaped curve relationship based on the research 
of EKC theory, and China's agricultural carbon 
emissions were at the left of the inflection point of 
the inverted U-shaped curve. Current form of 
EKC not only limited to the inverted U-shaped 
curve because the Non-income factors can also 
affect the form. The third power of item of the per 
capita GDP is used when verifying the existence 
of EKC. Because the measure of the inflection 
points of the corresponding high per capita 
income levels when only contains second power 
of per capita GDP [11]. And the non-income 
factors should be considered too. 
 
In recent years, there are more and more 
researches on the combination of EKC and 
spatial econometric model. Yang et al. [12] 
studied the relationship between air quality and 
economic growth of 46 cities in China by 
combining EKC and spatial econometric model. 
Wu and Tian [13] analyzed the spatial correlation, 
EKC shape and determinants of provincial 
environmental pollution based on the EKC theory 
and spatial econometric model. Hao et al. [14] 
found that there is strong spatial correlation 
between China's economic growth and energy or 
electricity consumption per capita, and the 
energy or power consumption per capita and Per 
capita GDP have the N-shaped EKC relationship 
by choosing the appropriate spatial econometrics 
model to the Chinese provincial per capita 
energy consumption and power consumption per 
capita for empirical research. 
 
When investigating the relationship between 
household electricity carbon emission and 
income, it is unreasonable to use EKC equation 
directly, because the hypothesis of spatial data 
independence of EKC is obviously inconsistent 
with reality. First of all, China's regional economic 
development is unbalanced. Each region has its 
own characteristics and forms its own 
"convergence club". Second, the economic 
behavior of the current decision of regional 
economies is often affected by the previous or 
current behavior of other economies [15], for 
example local government perhaps reference the 
policies of electricity price and energy 

conservation of the neighborhoods and then 
make the relevant policies. And city is a nodes of 
social economic and social resources in the 
economic region and the residents' consumption 
behavior is related to economic and social 
development level [16]. Moreover, there are 
differences in the endowment of power resources 
between different provinces in China, and there 
are contradictions between the endowment of 
power resources and demand, which leads to a 
large number of power transmission and 
allocation among regional power grids in China. 
However, the carbon emission coefficient of 
power in different regions is obviously different. 
So it is unreasonable to investigate the influence 
of local electricity carbon emissions on local 
regions only from the perspective of consumption 
[17]. Finally, temperature will also affect the 
electricity consumption of residents. Chen et al. 
[18] found that the colder the household area is, 
the less willing residents are to save energy, and 
the temperature of adjacent areas is often similar. 
Therefore, it may be biased to ignore the spatial 
characteristics when examining the household 
electricity carbon emissions. Spatial 
econometrics abandons the traditional 
assumption that econometrics has no spatial 
relevance, and introduces a spatial weight matrix 
to consider the impact of spatial correlation on 
economic activities, so as to eliminate the spatial 
bias in the calculation results. 
 
Income is one of the key factors that affect the 
consumption of electricity, and the price of 
electricity will also affect the consumption of 
electricity. However, in China, the household 
electricity price has been cross-subsidized for a 
long time, which is lower than the industrial 
electricity price. The household electricity price 
has not changed much in the past dozen years 
[19], so this paper does not consider the 
household electricity price. Factors such as 
population density and urbanization rate will also 
affect the household electricity consumption. 
Jones and Kammen [20] pointed out that there 
was a negative correlation between population 
density and carbon emissions, which means 
carbon emissions would decrease with the 
increase of population density. However, their 
study of the spatial distribution of household 
carbon footprint in the United States showed that 
the result was consistent with previous studies 
considering only urban data. However there 
appeared to be a small positive correlation 
between household carbon emissions and 
population density when considering the whole 
region or country. At the same time, it is found 
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that population density may affect the intensity of 
household carbon emission by influencing the 
size of houses. Ding [21] and Wang et al. [22] 
decomposed the carbon dioxide emissions of 
household energy consumption and found that 
the population scale effect, income level, urban-
rural structure and other factors are the key 
factors affecting the carbon emissions of 
household energy consumption.  
 

Therefore, this chapter will introduce urbanization 
rate and population density to expansion EKC 
theory and select the space panel econometric 
model to study the household electricity carbon 
emissions in China. The main innovation of this 
paper is to investigate the spatial correlation of 
household electric carbon emissions. The rest of 
this paper is structured as follows: the third part 
briefly introduces the model, estimation method 
and data to be used in this paper; the fourth part 
carries on the spatial autocorrelation test, and 
uses the spatial econometric model to carry on 
the demonstration analysis; the fifth part is the 
conclusion. 
 

3. ECONOMETRIC MODEL 
 

3.1 Basic Econometric Model 
 

3.1.1 Model reference form 
 

This paper introduces the EKC equation 
containing the third power terms of per capita 
real GDP as the basic form of the regression 
equation, and introduces the controlling variables, 
urbanization rate and population density, to 
expand the EKC equation: 
 

lnE�,� = α� + ��lny�,� + ���lny�,��
�
+ ���lny�,��

�
+

��lnUR�,� + ��lnPD�,� + φ
�,�

                             (1) 
 

Ei,t represents carbon emission generated by per 
capita household electricity consumption of the 
province i in the year t, yi,t represents per capita 
real GDP of the province i in the year t, Although 
per capita disposable income is often used to 
investigate the impact on household electricity 
consumption, per capita GDP is also used in 
some studies [23]. URi,t and PDi,t represent two 
control variables: urbanization rate and 
population density. αi is a random perturbation 
term, and φi,t is a random perturbation term. 
Different values of β1, β2 and β3 will lead to 
different shapes of curves, which can be divided 
into the following 7 cases: 
 

(1) When β1=β2=β3=0, there is no relationship 
between per capita household electricity 
carbon emissions and per capita GDP; 

(2)  When β1<0 and β2=β3=0, per capita 
household electricity carbon emissions 
decrease with the increase of per capita 
GDP; 

(3)  When β1>0 and β2=β3=0, per capita 
household electricity carbon emissions 
increase with the increase of per capita 
GDP; 

(4)  When β1<0, β2>0 and β3=0, there is a U-
shaped relationship between per capita 
household electricity carbon emissions and 
per capita GDP; 

(5) When β1>0, β2<0 and β3=0, there is an 
inverted U-shaped relationship between 
per capita household electricity carbon 
emissions and per capita GDP. When 
carbon emissions start to decline, the 

turning point is
1

22
ty e



 ; 

(6)  When β1<0, β2>0 and β3<0, there is an 
inverted N-shaped relationship between 
per capita household electricity carbon 
emissions and per capita GDP, which 
means that per capita household electricity 
carbon emissions start to increase at the 
first turning point, and decrease with the 
growth of per capita GDP at the second 
turning point. 

(7)  When β1>0, β2<0 and β3>0, there is a N-
shaped relationship between per capita 
household electricity carbon emissions and 
per capita GDP, which means that the per 
capita household electricity carbon 
emissions start to decrease at the first 
turning point, and increase with the growth 
of per capita GDP at the second turning 
point.  

 

3.1.2 Spatial econometric model 
 

Before introducing spatial autocorrelation factors, 
spatial correlation test of data should be carried 
out first. The spatial correlation index is Moran 
index [24], and its calculation formula is: 

 

      

I =
�∑ ∑ ��,�(����̅)(����̅)�

���
�
���

∑ ∑ ��,� ∑ (����̅)��
���

�
���

�
���

=
∑ ∑ ��,�(����̅)(����̅)�

���
�
���

��∑ ∑ ��,�
�
���

�
���

  

(2) 
 

Where, I is the Moran index, xi is the observed 
value of the explained variables in the region i, n 
is the total number of regions, Wi,j is the spatial 
weight matrix. Different forms of space weight 
matrix will not substantially change the result of 
space regression [13]. Therefore, this paper 
adopts the adjacent weight matrix. if space 
region I is adjacent to j, then W i,j=1; 
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otherwise,Wi,j=0. The value range of Moran index 
is [-1, 1]. When Moran index is greater than 0, it 
means there is positive spatial autocorrelation; 
when it is less than 0, it means there is negative 
spatial correlation. 
 
When Moran index indicates the spatial 
dependence of panel data, the spatial panel 
model can be introduced, which may contain the 
dependent variable of spatial lag or the error 
term of spatial autoregressive. Elhorst [25] 
proposed three basic spatial econometric  
models, namely spatial lag model (SLM), spatial 
error model (SEM) and spatial Durbin model 
(SDM).  
 
The basic form of SLM is: 
 

Y�,� = ρ∑ ��,���,�
�
��� + � + ���,� + �� + η

�
+ φ�,�                                                                      

(3) 
 
Where, i=1，…， N, and t=1，…， T. Yi,t 
represents the cross-sectional observation value 
of unit i at time t, which is an N×1 dimensional 
vector composed of explained variables. Xi,t is 
the explanatory variable. Ρ represents the spatial 
regression coefficient, Wi,j represents the space 
weight matrix, the paper uses the adjacent 
weight matrix, namely, such as space region i 
and j adjacent, then Wi,j=1, otherwise Wi,j=0. α 
denotes the constant term, β denotes the 
estimated coefficient of the explanatory variable; 
μi stands for space effect; ηt means time fixed 
effect; φi,t means independent homodistributed 
error term. 
 
The basic form of SEM is: 

 
Y�,� = βX�,� + μ

�
+ η

�
+ φ

�,�
				                     （4） 

 
φ

�,�
= λ∑ ��,���,� + ��,�

�
���                          （5） 

 
Where, φi,t is the spatial autocorrelation error 
term, λ is the spatial error coefficient.  

 
The basic form of SDM is:  

 
Y�,� = ρ∑ ��,���,�

�
��� + ���,� + �∑ ��,���,�

�
��� + �� + η

�
+

φ
�,�
																								                                                     (6) 

 
3.1.3 Correlation testing and estimation 

methods 
 

This article is based on the steps adopted by 
Elhorst [25]. Firstly, estimate the spatial panel 
data model. The estimation methods respectively 

are mixed OLS, space-fixed effect, time-fixed 
effect and time-fixed and space-fixed effect. The 
likelihood ratio test is applied to the fixed effects, 
and whether the spatial panel data overlooked 
the space effect of panel data is tested according 
to each kind of model of LM statistics, which is 
used to determine what kind of spatial 
econometrics model.  
 
Secondly, Wald test and LR test are used to test 
whether SDM can be simplified into SLM or  
SEM. If both null hypotheses are rejected, the 
SDM provides the best fit. Finally, Hausman           
test is used to select random effects and fixed 
effects. 
 

3.2 Data Description 
 

This paper mainly adopts two kinds of index data. 
One is the per capita real GDP used to reflect the 
level of regional economic development, which is 
expressed by yi,t. The other is the carbon 
emissions caused by the per capita household 
electricity consumption of provincial residents 
over the years, which is used to reflect the living 
electricity consumption of residents, represented 
by Ei,t. In the study, the per capita value of 
household electricity carbon emissions can 
eliminate the scale effect. Referring to other EKC 
empirical studies, this paper selected population 
density and urbanization rate as control variables. 
The electricity consumption data used in this 
study were derived from China Energy Statistics 
Yearbook from 2006 to 2016, and the data of 30 
provinces, municipalities and autonomous 
regions (except Tibet, Hong Kong, Macao and 
Taiwan) were selected.  
 
According to Table 1, the per capita household 
electricity carbon emissions of residents in each 
province are calculated as follows: 
 

E�,� = CE�,� ∗
��,�

��,�
																																																	（7） 

 
Where, Ei,t represents the per capita household 
electricity carbon emissions of residents in the 
province i in the year t(i =1,2... , 30; t = 1, 2,... , 
11), and the unit is kg/ person; CEi,t represents 
the household electricity consumption in the 
province i in the year t, and the unit is kWh; Fi.k 
represents the grid emission factor of the region 
of province i, and the unit is kgCO2/kWh; ni,t 
refers to the resident population of the province i 
in the year t. Table 2 shows the descriptive 
statistical results of each variable. 
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Table 1. Carbon emission factors of regional power grid in 2015 
 

Region Grid carbon emission factor (unit: kgCO2/kWh) 
North China 1.0416 
Northeast China 1.1291 
East China 0.8112 
central China 0.9515 
Northwest China 0.9457 
South China 0.8959 
Note: the carbon emission factor of China's regional power grid in 2015 is the weighted average of the marginal 

power emission factor from 2011 to 2013 
 

Table 2. Descriptive statistical results of variables 
 

Variable name Unit Mean Standard 
deviation 

Maximum Median Minimum 

Per Capita 
Household 
Electricity 
Carbon 
Emissions 

kg/person 357.75 153.11 838.65 339.35 118.90 

Per Capita Real 
GDP 

Yuan(in the 
constant of 2005) 

28735.49 17674.55 95560.13 24012.71 5376.46 

Urbanization 
Rate 

% 51.74 14.13 89.60 49.22 26.87 

Population 
Density 

persons/square 
kilometer 

436.96 632.75 3772.94 279.39 7.54 

 

4. EMPIRICAL RESULTS AND ANALYSIS 
 

4.1 Per Capita Household Electricity 
Carbon Emissions Distribution and 
Spatial Autocorrelation Analysis 

 

The software STATA was used to draw the 
distribution map and Moran scatter plot of the per 
capita household electricity carbon emissions of 
Chinese residents in 2005, 2010 and 2015 (seen 
in Fig. 1, Fig. 2 and Fig. 3). When drawing the 
carbon emissions distribution map, the same 
segmentation method is used: 0~300, 300~400, 
400~500 and above, and the unit is kg/person. 
Though the distribution maps of three years, it 
can be found that the level of per capita 
household electricity carbon emissions is similar 
in the adjacent areas. At the same time, per 
capita household electricity carbon emissions are 
gradually increased, and that of the coastal areas 
grow faster. The provinces above 500kg/person 
carbon emissions are mainly concentrated in 
coastal areas. It can be concluded from the 
Moran scatter diagrams that the global Moran’s I 
of per capita household electricity carbon 
emissions is greater than zero, and the 
significance test of 1% indicates that per capita 
household electricity carbon emissions have a 
significant spatial positive correlation (distribution 

of agglomeration state), which proves that spatial 
econometric regression test can be conducted. In 
2005, 2010 and 2015, the global Moran’s I was 
0.321, 0.412 and 0.360 respectively. It can be 
seen that per capita household electricity carbon 
emissions have spatial correlation. Moran scatter 
plot is divided into four quadrants, which 
embodies the local space contact form. The first, 
two, three and four quadrant show respectively 
high-high concentration, low-high concentration 
and low-low concentration and high-low 
agglomeration. For example, high-high 
concentration shows that if an area is of high per 
capita household electricity carbon emissions, 
the other areas around the area is of high per 
capita household electricity carbon emissions. 
Other types are in the same way. The Moran 
scatter plots of 2005, 2010 and 2015 at the top 
left of the pictures shows that 24/30, 26/30 and 
22/30 provinces are in the first and third 
quadrants. That means most provinces or cities 
are located in the high-high concentration and 
low-low concentration, which also indicates that 
per capita household electricity carbon emissions 
have obvious spatial autocorrelation 
characteristics. In 2010 and 2015, more 
provinces were located in high-high con-
centration than in 2005. 
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Fig. 1. The distribution map and Moran scatter plot of per capita household electricity carbon 
emissions of Chinese residents in 30 province in 2005 

 

 
 

Fig. 2. The distribution map and Moran scatter plot of per capita household electricity carbon 
emissions of Chinese residents in 30 province in 2010 
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Fig. 3. The distribution map and Moran scatter plot of per capita household electricity carbon 
emissions of Chinese residents in 30 province in 2015 

 

4.2 Spatial Diagnostic Test 
 
To test which model could better fit the data, the 
non-spatial panel data model was first analyzed, 
and the classical Lagrange Multiplier Statistic 
(LM-lag, LM-error) and Robust Lagrange 
Multiplier Statistic (Robust LM-lag, Robust LM-
error) were used to select the spatial panel 
econometric model [15]. The equation (1) was 
estimated by mixed OLS, space-fixed effect, 
time-fixed effect and space-fixed and time-fixed 
effect. 
 
Due to the different situation of each province 
and city, there may be omission variables that do 
not change with time. The fixed effect is still the 
first choice for two reasons according to the 
current empirical analysis. This is because: 
Firstly, when modeling spatial panel data, the 
fixed effect is usually more appropriate than the 
random effect. Secondly, Lee and Yu [26] 
believed that the fixed effect was robust, and the 
calculation was as simple as the random effect 
model. Therefore, the fixed effect model is 
considered in this paper. The estimated results 
are shown in Table 3. 
 

The estimation results of the non-spatial panel 
data model show that the estimation results of 

the time-fixed effect model are the best in the set 
of estimation methods. Since the estimators of 
independent variables and control variables of 
the time-fixed effect model are both significant at 
the significance level of 1%, the model fitting 
degree reaches 0.777, and the D-W statistic 
close to 2 indicates that the sequence correlation 
problem is not significant. Due to the introduction 
of the cubic form of regional per capita GDP in 
explanatory variables, the EKC curve estimated 
by the time-fixed effect model is of inverted N-
shaped, and there are EKC minimum point and 
maximum point. The EKC minimum point 
corresponds to a per capita GDP of 5,014 Yuan 
(at constant price in 2005), while the EKC 
maximum point corresponds to a per capita GDP 
of 67,507 Yuan. The LM-lag and LM-error test 
results of the time-fixed effect model showed that 
the time-fixed effect model rejected the 
hypothesis that there was no spatial error term at 
the significance level of 1%, and whether there 
was a spatial lag term did not pass the test. 
Therefore, the spatial error model of time fixed 
effect was used for estimation next (seen in 
Table 4). 

 
From the estimation results of the spatial error 
model of time-fixed effect, the fitting degree R

2
 of 

the spatial error model of time fixed effect was 
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0.875, which was higher than that of the non-
spatial and time-fixed effect model, indicating 
that the spatial error model could better fit the 
data. The spatial error coefficient is 0.302 at the 
significance level of 1%, which again indicates 
that the household electricity carbon emissions 
have a strong spatial autocorrelation. At the 
significance level of 1%, the logarithmic 
coefficients of per capita GDP are all significant, 
and the coefficients of the primary, secondary 
and tertiary terms are negative, positive and 

negative respectively, indicating that the 
environmental Kuznets curve of household 
electricity carbon emissions is of inverted N-
shaped. The per capita real GDP of the 
maximum point and minimum point of EKC are 
10198 Yuan and 44355 Yuan (at constant price 
in 2005) respectively. That means when per 
capita real GDP of the region is less than 10198 
Yuan, per capita household electricity carbon 
emissions of residents are in a state of decline. 
When per capita real GDP of the region is 

 
Table 3. Estimation results of non-spatial panel model 

 

Estimation method Mixed OLS Space-fixed Time-fixed Time-fixed and 
space-fixed 

C 130.911** 

(3.604) 

   

Lny -39.806*** 
(-3.677) 

-5.310 
(-0.974) 

-52.386*** 
(-5.599) 

-6.918 
(-1.361) 

(lny) 2 4.125*** 

(3.847) 

0.663 

(1.216) 

5.283*** 

(5.710) 

0.722 

(1.424) 

(lny) 3 -0.140*** 

(-3.949) 

-0.024 

(-1.344) 

-0.176*** 

(-5.785) 

-0.025 

(-1.487) 

lnUR -0.052 

(-0.505) 

1.060 *** 

(6.710) 

0.596*** 

(5.686) 

1.232*** 

(7.805) 

lnPD 0.033*** 

(3.349) 

0.1496 

(0.906) 

0.0523*** 

(6.057) 

-0.752 

(-3.733) 

R2 0.821 0.934 0.777 0.513 

σ2 0.036 0.006 0.026 0.005 

D-W 1.620 1.873 2.132 2.003 

Log-likelihood 82.318 370.039 136.258 396.110 
LM spatial lag 59.453*** 

(p=0.000) 

9.790*** 

(p=0.002) 

0.298 

(p=0.585) 

0.467 

(p=0.495) 

Robust LM spatial lag 15.528*** 

(p=0.000) 

0.139 

(p=0.710) 

5.919** 

(p=0.015) 

10.776*** 

(p=0.001) 

LM spatial error 59.857*** 
(p=0.000) 

19.812*** 
(p=0.000) 

13.001*** 
(p=0.000) 

1.971 
(p=0.160) 

Robust LM spatial error 15.932*** 

(p=0.000) 

10.160*** 

(p=0.001) 

18.622*** 

(p=0.000) 

12.280*** 

(p= 0.000) 

per capita real GDP (Yuan) 
corresponding to the EKC 
minimum point 

8604 —— 5014 —— 

Real Per capita GDP (Yuan) 
corresponding to EKC 
maximum point 

56954 —— 67507 —— 

Note: lny represents the logarithm of carbon emissions generated by per capita household electricity 
consumption at the provincial level, lny represents the logarithm of per capita income at the provincial level, lnUR 
represents the logarithm of urbanization rate, lnPD represents the logarithm of population density at the provincial 

level, lnL represents the logarithm of maximum likelihood value, and D-W represents the statistic of Durbin-
Waston. The estimated value of the explanatory variable is the corresponding t value in square brackets, and the 

corresponding p value in square brackets for each LM test statistic. ***, ** and * represent significant at the 
significance level of 1%, 5% and 10% respectively 
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Table 4. Estimation results of spatial error model 
 

Explanatory variables Space error model of 
time - fixed effect 

lny -56.291*** (-5.951) 

(lny) 2 5.684*** (6.073) 

(lny) 3 -0.190*** (-6.151) 

lnUR 0.529*** (5.116) 

lnPD 0.051*** (5.219) 

λ 0.302*** (4.576) 

σ2 0.025 

R2 0.8705 

corr-R2 0.7765 

log-likelihood 143.723 

The per capita real GDP (Yuan) corresponding to the EKC minimum 
point 

10198 

Real Per capita GDP (Yuan) corresponding to the EKC maximum point 44355 
 

between 10198 and 44355 Yuan, per capita 
household electricity carbon emissions are on 
the rise. When per capita real GDP of the region 
is greater than 44355 Yuan, per capita household 
carbon emissions are in a state of decline. In 
2015, the per capita real GDP (at constant price 
in 2005) of 20 provinces was between 10198 and 
44355 Yuan, and per capita real GDP (at 
constant price in 2005) of 10 provinces was 
above 44355 Yuan. Per capita household 
electricity carbon emissions are still rising in most 
of the provinces in China. Income is a key 
variable affecting residents' electricity 
consumption, and its influence on residents' 
electricity demand is mainly through the following 
two ways: first, indirectly affecting residents' 
electricity consumption by affecting their electric 
complementary-home appliances; second, 
through the impact of residents on the frequency 
of electrical appliances to produce a direct 
impact. At the same time, the coefficient of 
urbanization rate and population density is also 
significantly positive, indicating that the carbon 
emissions of household electricity will also 
increase with the acceleration of urbanization 
process and the increase of population. In the 
context of economic growth, accelerated 
urbanization and increasing population, reducing 
household carbon emissions from electricity can 
improve energy conservation and emission 
reduction. 
 

5. CONCLUSION 
 
This paper selects the panel data of 30 provinces 
in China from 2005 to 2015, and calculates the 

EKC of per capita household electricity carbon 
emissions through spatial error model. The main 
conclusions of this paper are as follows: 
according to the spatial statistical analysis and 
the estimation results of the spatial econometric 
model, there is a significant positive spatial 
autocorrelation between the household electricity 
carbon emissions of residents in various 
provinces or cities in China. Provinces and cities 
with high carbon emissions are usually adjacent 
to or surrounded by those with high carbon 
emissions, while those with low carbon 
emissions are usually adjacent to or surrounded 
by those with low carbon emissions. This is 
because the economic development level, 
population size and urbanization rate of 
neighboring provinces are similar. Therefore, in 
the theoretical summary, empirical test and 
formulation of energy-saving and emission 
reduction measures for household energy use, 
the impact of geographical space factors on 
carbon emissions from household energy 
consumption should be considered. When 
exploring the relationship between household 
electricity carbon emissions and income, the 
study shows that the per capita electricity carbon 
emissions and income of residents show an 
inverted N shape. At present, per capita 
household electricity carbon emissions of most 
provinces are in the rising stage, while that of 
some developed provinces are in the declining 
stage. The increase of urbanization rate and 
population growth will also lead to the increase of 
per capita household electricity carbon emissions. 
Therefore, under the trend of economic growth, 
increase of population size and acceleration of 
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urbanization process, reducing household carbon 
emissions is still the key to energy conservation 
and emission reduction. 
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