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ABSTRACT 
 

Since the 70’s, when offshore oil exploitation advanced, submarine pipeline design has been the 
subject of many researcher studies. Pipeline free spans are common and frequently assessed. In 
spite of this, up to this day, there is no simple and specific formula to calculate the effective tension 
(Seff), which takes into account the pipeline sagging in moderate or large span lengths. Therefore, 
engineers normally apply finite element analyses, even for preliminary evaluations. On the other 
hand, there are simple formulae to calculate other parameters such as the deflection, the moment 
and the natural frequency, which require previous knowledge of the Seff value. In the present 
contribution, an approximate formula is proposed, in order to solve the beam differential equation 
for both pinned and fixed end conditions and make it possible to calculate the Seff value using a 
straightforward and relatively simple equation, which takes into account the pipeline sagging. The 
values calculated using the proposed method were compared to numerical results obtained for 
many different cases, varying the span length and the effective tension. The analysis results 
showed that the proposed equation is highly accurate for practical conditions and, therefore, may 
become a useful tool for the assessment of the pipeline free spans. 
 

Method Article 
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1. INTRODUCTION 
 

The increase of oil demand has driven the 
development of structures from onshore to 
offshore [1], but following this same trend the 
diminishing availability of oil in shallow water 
reservoirs pushed engineers to design more 
facilities in deep and, recently, ultra-deep waters. 
In addition, longer submarine pipelines are 
required both because of the longer distances to 
shore as in order to maximize the number of 
wells covered by the same platform. As a 
consequence of this, the number of free spans 
also increases, caused by seabed imperfections 
and/or crossings.  After the installation, scour 
pits, induced by environmental current 
turbulence, can also create free spans or expand 
the existing ones [2]. On the other hand, the 
unacceptably increased spans require 
intervention, increasing costs and extending the 
execution time. Consequently, the assessment of 
free spans is a very important and frequent 
procedure in both design and conservation of 
submarine pipelines, demanding reliable and 
easy methodologies. 
 

Free spans are evaluated as horizontal beams 
supported by their ends with applied loads such 
as temperature, internal and external pressures, 
self-weight (of the pipe, content, coating, etc.), 
wave, current and dynamic forces due to vortex 
induced vibrations (VIV). The three last of these 
will not be discussed in this work. The 
temperature increment T acts directly into axial 
strain  = T.e, where e is the temperature 
expansion coefficient. Internal and external 
pressure drives the hoop stress and, 
consequently, due to the Poisson effect, cause 
axial stress. In addition, as a second order effect, 
demonstrated by Palmer and Baldry [3] and after 
in more details by Sparks [4], internal and 
external pressure create lateral forces on curved 
segments,  whose behavior can be considered 
as equivalent to a beam axially loaded by  
 

���� = ��� − ���� + ���� 
 

(1) 
 
where Seff is the so-called effective tension, Ntr is 
the true steel wall axial force, pi, pe, Ai, Ae are the 
internal and external pressures and cross 
sections areas, respectively. More discussion 
can be found in literature about this in [5–7]. 
 
For a totally restrained pipe, the code DNV-RP-
F105 [8] presents the following formulation: 

���� = ���� − ∆����(1 − 2�) − ���	���� (2) 
 
where Heff is the effective tension just after the 
pipe installation (lay tension), pi is the internal 

pressure increment,  is the Poisson coefficient, 
As is the steel cross section area and E is the 
Young modulus. The external pressure pe is 
already accounted in Heff. 
 
However, as mentioned before, Equation (2) is 
valid only for a totally restrained pipe, which is 
not the condition of free spans, where sagging 
causes elongation and increases Seff. At the 
same time, according to the Beam Theory, Seff, 
together with the self-weight q (N/m) and section 
properties, defines the sagging. Therefore, in 
order to calculate the free span Seff a Finite 
Element Analysis (FEA) is normally performed. 
 
The Seff value is required to calculate the natural 
frequencies, deflection, true axial force Ntr, and 
bending moment M [8]. With Ntr and M, it is 
possible to determine the axial stresses in the 
pipe. The natural frequencies are also important 
for the dynamic VIV evaluation. 
 
Hobbs [9,10] developed a solution based on 
Beam Theory for the upheaval buckling of 
submarine pipelines where, as in free spans, the 
final position and axial force are directly related 
and unknown. However, due to the complexity of 
the equations, the calculation of the final 
configuration based on a given condition of 
pressure and temperature require numeric 
computations. 
  
More recently, Vedeld et al. [11] developed a 
semi-analytical solution for natural frequencies 
with remarkable accuracy and, unlike the 
formulation in [8], with no limitations of span 
length and deflection. Nevertheless, it still 
depends on the value of Seff for the static 
condition, so he then used an iterative approach 
to calculate Seff.  Sollund et al. [12] applied the 
same solution for very short span lengths, with 
the span length - outer diameter ratio smaller 
than 30, where sagging can be neglected and Seff 
is calculated directly by Equation (2).  
 
The effective tension Seff is a primary result 
required for several assessments in free spans.  
However, there are no direct and accurate 
solutions known in literature for the Seff in spans 
with a considerable length. This work presents 
an approximate solution with sufficient accuracy, 
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which engineers can apply in submarine pipeline 
design, as a reliable and easy tool. Two different 
conditions will be addressed regarding 
boundaries: pinned-pinned and fixed-fixed. The 
soil stiffness at the shoulders will not be 
considered at this moment. 
 

2. PROPOSED SOLUTION 
 

2.1 Mathematical Problem 
 
According to the Beam Theory, the behavior of a 
horizontal beam subjected to axial and 
transversal uniform loads is described by the 
differential equation 
 

��
���

���
− ����

���

���
+ � = 0 (3) 

 
where I is the area moment of inertia, E is the 
Young modulus, v(x) is the vertical displacement, 
x is the longitudinal position along the pipe, Seff is 
the axial load (positive for tension) and q is the 
vertical load per length unit, assumed as the 
submerged self-weight. For the desired boundary 
conditions, Equation (3) has different analytical 
solutions, depending if Seff is positive (tension), 
negative (compression) or null. 
 

 
Fig. 1. Effective tension for undeformed and 

sagged (buckled) positions 
 
In free span segments, the sagging causes an 
elongation of the pipe and thus Seff increases. 
Relative to the straight position (undeformed), 
the post sagging effective tension, assumed 
constant along span length L, can be calculated 
by 
 
���� = �� + �	��	�� (4) 
 
where S0 is the undeformed effective tension 

(Fig. 1), calculated by Equation (2), and s is the 
axial strain due to sagging, derived from 
 

�� = (1 �⁄ )� ��1 + (�� ��⁄ )� − 1���
�

�

 (5) 

 
which can be approximated, for small relative 
displacements, as: 

�� ≅
1

2�
	� �

��

��
�
�

��
�

�

 (6) 

 

Theoretically, the system of Equations (3), (4) 
and (6) could be solved in order to calculate Seff 
for a given condition of pressure and 
temperature. However, the solution of Equation 
(3) depends on the sign of Seff (positive, negative 
or null) and is not simple, making it unfeasible for 
a general mathematical solution. 
 

2.2 Solution with an Approximated 
Displacement Equation 

 
In order to make feasible the derivation of a 
general solution for the aforementioned problem, 
an approximated equation for the vertical 
displacement is used. The expression chosen to 
take place as the approximate solution of 
Equation (3) is a fourth degree polynomial, given 
by Equation (7). The reason for this choice was 
the good agreement of second and third 
derivatives with the bending moment and shear 
force diagrams, respectively, of a beam with a 
uniform transversal load. 
 

�(̅�) = ��	�
� + ��	�

� + ��	�
� + ��	� + ��. (7) 

 

A relation between the coefficients ai can be 
derived applying the proper boundary conditions 
(BC’s) for each configuration, as shown in           
Table 1. 
 

Table 1. Boundary conditions and derived 
coefficients 

 
Description Symbol Value 
  Pinned-

pinned 
Fixed-
fixed 

Deflection v(x=0) 0 0 
v(x=L) 0 0 

Declination dv/dx(x=0) tan(0) 0 
dv/dx(x=L) tan(-0) 0 

Moment EI d2v/dx2(x=0) 0 M0 
EI d2v/dx2(x=L) 0 M0 

Shear force EI d3v/dx3(x=0) Q0 Q0 
EI d3v/dx3(x=L) -Q0 -Q0 

Polynomial  
coefficients 

a3 -2La4 -2La4 
a2 0 L2a4 
a1 L3a4 0 
a0 0 0 

 
Integrating Equation (3), with symmetric BC’s 
(Table 1), will result in 
 

��
���

���
− ����

��

��
+ � �� −

�

2
� = 0 (8) 

S0 S0 

Seff Seff 

undeformed 

sagged 
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and then repeating the same procedure will 
become 
 

��
���

���
− ����� +

��

2
(� − �) − �� = 0	. (9) 

 
The left hand of Equations (8) and (9) are 
differential operators L(f(x)) equals to 0 for the 
exact solution, which means L(v(x)) = 0. For the 
proposed approximate solution, the result will be 
 

���(̅�)� = �(�) (10) 

 
where R(x) is a residual, related to the 
approximation error. In an attempt to reduce the 
error to a minimum value, the averaged error 
along the span length will be forced to be zero, 
which means 
 

� �(�)	�� = 0
�

�

 (11) 

 
Then Equation (11) is applied related to the 
differential operator L(f) on Equation (8), for the 
fixed-fixed condition, or on Equation (9), for the 
pinned-pinned condition. These different 
equations were chosen in order to get the best 
fitting, considering the limitations of the 
approximate formulation in Equation (7). This 
procedure will determinate its coefficients as a 
function of Seff. 

 

�� =
−�

�������� + 24��
 (12) 

 
where C7 is derived depending on the condition ( 
Table 2). The value calculated from the 
described procedure for the fixed-fixed condition 
was 0.5, however, tests showed that 0.6 gives a 
better fitting. The other coefficients (a3 to a0) can 
be directly calculated from a4 (Table 1). 

 
Once the deflection function v(x) is known, by 
means of its coefficients ai, it is possible to 
calculate the axial strain due to the sagging 
elongation by means of Equation (6): 

 
�� = ��(��)

�	��	. (13) 
 

Table 2. Coefficient values 
 

Coefficient Value 
 Pinned-pinned Fixed-fixed 
C2 

* 1 4 
C5 

* 1/8 1/12 
C6 

* 5/384 1/384 
C7 

** 2.4 0.6 
C8 

** 17/70 1/105 
*
 DNV-RP-F105 [8] 

**
 derived formulation 

 
Combining Equations (4), (12) and (13) will result 
in the following:  
 

�� �
����

���
�
�

+ �� �
����

���
�
�

+ �� �
����

���
� + �� = 0 (14) 

 
where Pcr = C2

2 EI/L2 is the critical buckling load 
and 
 
�� = ��

�	��
� 

�� = ��
� 	��� 	�

48

��
� − ��	��

� 	�
��
���

�� 

�� = �� 	��
24

���
�

− ��	�� 	�
48

����
��
���

�� 

�� = −�� 	�
24

��
�
�

	�
��
���

� − ��
�	��	��� 	

(��)�

���
�

		. 

(15) 

 
In Equation (14), Seff is the only unknown and 
represents the root of a third degree polynomial. 
The solution is known in literature as Cardano’s 
formula [13,14]. First, the following parameters 
need to be defined: 
 
�� = �� ��⁄ − (�� ��⁄ )� 3⁄  
�� = �� ��⁄ − ���� (3��

�)⁄ + 2	[�� (3��)⁄ ]� 

�� = ��� 2⁄ �
�
+ (�� 3⁄ )� 

�� = ����	 2⁄ �
�
+ |��| 

�� = arccos�−�� 2��⁄ �	. 

(16) 

 
Aiming at the desired root among the three 
available solutions and assuming Seff/Pcr > -1, it 
can be summarized based on previous 
parameters as 

����

���
= �

�−�� 2⁄ + ����
� �⁄

+ �−�� 2⁄ − ����
� �⁄

− �� (3��)⁄ 		 ; 					��	�� ≥ 0

2��
� �⁄ cos(�� 3⁄ ) − �� (3��)⁄ 		; 				��		�� < 0																																							

�		. (17) 

 
Then, according to the developed methodology, Seff can be calculated directly from S0, which is based 
on pressure and temperature conditions. The solution basically resorts to solving Equation (17) with 
its parameters defined in Equations (15) and (16), requiring no further FEA or iterative approach.  
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In this approximation, Seff was considered 
constant along the pipe, so the variation due to 
self-weight was not accounted for, wherefore the 
calculated value will be that corresponding to the 
mid-span section.  
 

2.3 Complementary Formulae 
 
Once Seff is known, as mentioned in Section 1, 
the code DNV-RP-F105 [8] provides simplified 
formulae to calculate the maximum static 
moment M and the deflection : 
 

� = �� ��
� �1 + ���� ���⁄ ��  

� = �� ��
� ����1 + ���� ���⁄ ���  

(18) 

 
where the coefficients C5 and C6 are listed in  
Table 2. In case these formulae do not have 
enough accuracy, the maximum deflection and 
momentum can be calculated from the analytical 
solutions of Equation (3) for a given Seff.  For 
example, for fixed-fixed condition, the analytical 
solution of maximum moment will be: 
 

� =

⎩
⎪
⎨

⎪
⎧

�

2��
�2 −

��

tanh(�� 2⁄ )
�								 ; 			��	���� > 0	

��� 12⁄ 																																				; 			��	���� = 0

�

2��
�

��

tan(�� 2⁄ )
− 2�									 ; 				��	���� < 0

� (19) 

 

where k2 = |Seff | / EI. 
 

These equations will be used, based on the 
Seff/Pcr value calculated in Equation (17), in order 

to expand the utility of the proposed formulation. 
The values obtained will also be compared to 
numeric results. The natural frequencies will not 
be evaluated in this work. 
 
The effect of soil flexibility on shoulders could be 
taken in account by the concept of effective 
length Leff, presented by Hobbs [15], that is 
calculated based on soil stiffness, pipe bending 
stiffness EI and span length L. This approach 
would bring the proposed solution closer to the 
real phenomenon. 
 

2.4 Design Sequence 
 
For a design procedure, the effective tension at 
installation position SI can be assumed equal to 
the lay tension H0. Then, Equation (14), 
reformulated to determine S0 for a given Seff, can 
be used to obtain the associated undeformed 
effective tension SIo (Fig. 2a): 
 

�
��
���

� = �
����
���

� −
�����(��)

�

���
�

��� �
����
���

� +
24

���
�
�
��

 (20) 

 
The undeformed effective tension for hydrotest 
(SHo) and operation (SOo) conditions are 
calculated adding the temperature and internal 
pressure increment effect according to the 
Equation (2). 
 
Finally, Equation (17) is used to calculate the 
corresponding effective tensions SH and SO (Fig. 
2b and c). 

 

 
 

Fig. 2. Example of design sequence for the fixed-fixed condition 
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3. FINITE ELEMENT ANALYSIS 
 

In order to evaluate the accuracy of the proposed 
solution, a finite element model was implemented 
in the software ANSYS Mechanical v17, whose 
structural matrices are derived based on the 
principle of virtual work. The chosen element 
type was the PIPE289, which is a quadratic 
three-node beam element based on 
Timoshenko’s beam theory, that includes first 
order shear deformation effects and handles 
large strain and/or rotation nonlinear 
applications. Because of the limitation of the first 
order shear deformation theory, the reliability of 
this element is limited to pipes with slenderness 
ratios greater than 30 [16]. In this work, the 
minimum value of the slenderness ratio 
calculated was 1350, remaining inside the 
applicability range of the referred formulation. 
The free span was discretized into elements 
whose length was set to half de pipe diameter. 
 

 
Fig. 3. Boundary condition configurations 

 

Regarding the boundary conditions, for the 
pinned-pinned configuration, the line end 
translations were restrained in all three directions 
and, in order to avoid numerical instability, also in 
the beam axial rotation. For the fixed-fixed 
configuration, the line ends were restrained to 
translate and rotate in all directions.  
 

A distributed vertical load was applied 
downwards along the pipe, corresponding to the 
submerged weight. In addition, an internal 
pressure was defined. The initial effective tension 
S0 for each case, calculated by Equation (2), was 
applied by an imposed axial displacement at one 
of the ends. 
 

Because of the slenderness of the problem, the 
simulation was performed considering 
geometrical nonlinearity, which is calculated 
based on the Newton-Raphson method. All 
applied loads, except for the self-weight, were 
divided into 10 steps, in order to guarantee better 
convergence and accuracy.  
 
The effective tension result is provided as an 
output solution from the selected element type. 

The value considered for the comparison with the 
proposed solution is that related to the mid-span 
section. The maximum moment is obtained by 
the integration of axial stresses at the mid span 
section for the pinned-pinned configuration and 
by the moment reaction at the pipe ends for the 
fixed-fixed configuration. The maximum 
deflection corresponds to the vertical 
displacement at the mid-span. 
 

4. RESULTS AND DISCUSSION 
 

4.1 Input Data 
 

The verification cases were generated varying 
the aimed Seff/Pcr values between -0.5 and 1.0. 
Values lower than -0.5 became too close to the 
critical buckling load and, therefore, unlikely to 
occur for normal pipeline design conditions. On 
the other hand, values greater than 1.0 are too 
large for spans with acceptable lengths. The 
length values were considered from L/D = 40, 
increasing this ratio progressively in steps of 20 
until the mid-span deflection reached 12D. This 
limit was chosen in order to remain within 
realistic design conditions. A total of 140 cases 
were analyzed. 
 
The pipe properties used are listed in Table 3. 
 
Table 3. Input data for the verification cases 

 
Description Symbol Value Unit 
Outer diameter D 457.20 mm 
Thickness t 28.575 mm 
Young modulus E 207 GPa 
Poisson coefficient  0.3  
Steel density s 7,850 kg/m

3
 

Submerged weight q 2.576 kN/m 
Internal pressure  
increment 

pi 28.75 MPa 

 

The initial effective tension S0 for each desired 
Seff/Pcr condition is calculated by Equation (20). 
For the finite element model, Equation (2) is also 
used to calculate the equivalent displacement 
that will give the necessary initial tension. Then, 
after sagging, equilibrium Seff values calculated in 
FEA are compared with those provided by the 
proposed solution, described in Section 2.2. 
 

4.2 Comparison between Results from 
the Proposed and the Numerical 
Solutions 

 

This section has been prepared to show the 
accuracy of the equation proposed in this paper 
comparing its results with those calculated using 

pinned-pinned 

fixed-fixed 
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numerical solutions. These results are obtained 
varying the relative span lengths L/D and the 
effective tensions Seff/Pcr. Fig. 4 presents the 
diference between Seff values relative to Pcr. 
Considering all the analysed cases, the 
maximum relative deviation of estimated Seff is -
2,1 %, which was obtained for L/D = 260 and 
Seff/Pcr  1.00 in the fixed-fixed configuration. In 
the same configuration, for a smaller L/D equal to 
140, the relative deviation is smaller than 0.5 % 
for all values of Seff/Pcr. For the pinned-pinned 
configuration, higher values of Seff/Pcr resulted in 
even smaller deviations, however, slightly larger 
values occur for the fixed-fixed boundary 
conditions for large L/D values. 
 

The true axial force was obtained by Equation  
(1) based on the calculated Seff value. The 
maximum relative deviation calculated for the 
axial force was 0.9 % for Seff/Pcr = -0.50 (Fig. 5). 
 
As mentioned in Section 2.3, once Seff is known, 
the maximum deflection (Fig. 6) and moment 

(Fig. 7) can easily be calculated by the simplified 
formula given in Equation (18), from DNV-RP-
F105 [8]. Regarding the deflections, the larger 
relative deviation was -3.1 %, calculated for L/D 
= 40 and Seff/Pcr = 1 (Fig. 6). In this case, the 
simplified formula calculated a 2.042 mm 
displacement against 2.109 mm from the FEA, 
which means a very small discrepancy in 
absolute value and, therefore, can be 
disregarded. For all other analyzed cases, this 
deviation was smaller than 2.3 % (in modulus). 
For almost all cases in the pinned-pinned 
configuration, no significant difference was 
observed for deflection deviation, while in the 
fixed-fixed cases the discrepancy tends to 
decrease along with L/D and Seff/Pcr 
combinations. 
 

The moment calculated from DNV-RP-F105 [8] 
for the pinned-pinned condition has presented a 
deviation from the numerical results smaller than 
2,5 % (Fig. 7a). Up this point, the resulting 
deviations of the simplified formula in 

 

 
 

Fig. 4. Difference between effective tension Seff calculated by the proposed formulation and by 
the numerical analyses relative to critical buckling load Pcr for pinned-pinned (a) and fixed-

fixed (b) configurations 
 

 
 

Fig. 5. Relative difference between the true axial force Ntr calculated by the proposed 
formulation and in the numerical analysis for the pinned-pinned (a) and fixed-fixed (b) 

configurations 
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Equation (18) are in good agreement with the 
deviation of the Seff values calculated based the 
proposed solution, which is smaller than 3%. 
This was expected, because those simplified 
formulae depend on a previously known value of 
Seff. However, for the fixed-fixed, the calculated 

divergence is much higher (Fig. 7b). This 
divergence is nearly constant along analyzed L/D 
values for each Seff/Pcr combination, therefore this 
formula could be easily adjusted, but it is                    
a third party formula that will not be altered              
here. 

 

 
 

Fig. 6. Relative difference between the deflection  calculated by the DNV-RP-F105 and the 
numerical analysis for the pinned-pinned (a) and fixed-fixed (b) configurations 

 

 
 

Fig. 7. Relative difference between moment M calculated by the DNV-RP-F105 and by the 
numerical analysis for pinned-pinned (a) and fixed-fixed (b) configurations 

 

 
 

Fig. 8. Relative difference between moment M calculated by analytical solution and by the 
numerical analysis for fixed-fixed configurations 
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Fig. 9. Maximum deflection  divided by diameter D calculated by the proposed solution for 
pinned-pinned (a) and fixed-fixed (b) configurations 

 
Another way to calculate the moment would be 
using Equation (19) which was derived here. The 
results from Equation (19) are plotted in Fig. 8 
showing divergence less than 1 % (in modulus) 
and, therefore, much better than those obtained 
about with Equation (18). 
 

In Fig. 9 are shown the relative maximum 
deflection /D, which calculation was also based 
on Seff value from the proposed solution. Since 
those results are very close to numerical 
calculation (Fig. 6) there is no need to present 
those ones too. Maximum values analyzed were 
/D = 11.39 for pinned-pinned and /D = 11.56 
for fixed-fixed condition. 

 

5. CONCLUSIONS 
 

Although free spans are common and frequently 
assessed in submarine pipeline, there is a lack of 
simple and accurate tools to calculate the 
effective tension and FEA is usually applied. This 
value is necessary to calculate many of the 
important information as true axial force, bending 
moment, deflection and natural frequency.  
 

The methodology developed in this work is 
based on an approximated solution and make it 
possible to derive a straightforward equation to 
calculate the effective tension Seff for any 
practical condition of pressure and temperature. 
 

The results from the proposed solution compared 
to the numerical solution presented high 
accuracy. The calculated divergence between 
those solutions were smaller than 2.1% for 
relative effective tension (Seff/Pcr) and smaller 
than 0.9 % for the axial force (in modulus).  
 
Based on the Seff values calculated by the 
proposed solution, the DNV-RP-F105 [8] 

simplified equations were used to calculate the 
maximum deflection and moment. Those results 
also presented great agreement with the 
numerical solution, except for the moment in 
fixed-fixed condition. It has been shown, 
however, that Equation (19), derived here, is an 
accurate replacement for the Equation (18) from 
DNV-RP-F105 [8]. 
 
Many different cases were calculated, for pinned-
pinned and fixed-fixed condition, varying L/D 
from 40 to 280 (limited for relative deflection /D 
< 12) and Seff/Pcr from -0.5 to 1.0. According to 
those results, the proposed solution appears to 
be a relatively simple and very accurate tool           
for free span assessments in any practical 
condition. 
 
In a future research, the stiffness of the soil on 
span shoulders could be taken in account in 
order to develop the same methodology of                   
this work on a more detailed analysis,          
however, in the meantime, the soil stiffness can 
be accounted for by the effective length (Leff)  
[15]. 
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