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Abstract

We explore whether an independent determination of the distance–redshift relation, and hence cosmological model
parameters, can be obtained from the apparent correlations between two different wave-band luminosities or fluxes,
as has been claimed in recent works using the X-ray and ultraviolet luminosities and fluxes of quasars. We show
that such an independent determination is possible only if the correlation between luminosities is obtained
independently of the cosmological model and measured fluxes and redshifts, for example, based on sound
theoretical models or unrelated observations. In particular, we show that if the correlation is determined empirically
for two luminosities obtained from fluxes and redshifts, then the method suffers from circularity. In the case where
the observed correlation between fluxes in very narrow redshift bins is used as a proxy for the luminosity
correlation, we show that one is dealing with a pure tautology with no information on distances and cosmological
model. We argue that the problem arises because of the incomplete treatment of the correlation, and we use
numerical methods with a joint X-ray and ultraviolet quasar data set to demonstrate this shortcoming.

Unified Astronomy Thesaurus concepts: Cosmological models (337); X-ray quasars (1821)

1. Introduction

Recently, Risaliti & Lusso (2019)—hereafter RL—used a
measure of the nonlinear correlation between the X-ray and
ultraviolet (UV) luminosities of quasars to arrive at a
determination of the shape of the luminosity–distance function
in the redshift range 1.4< z< 5, finding that it deviates from
that of the ΛCDM cosmology. This deviation favored a larger
overall matter density fraction Ωm and an evolving dark energy
equation of state. Similar results were obtained by the same
method in subsequent works using quasar samples at higher
redshifts (Salvestrini et al. 2020), incorporating additional
X-ray quasar catalogs (Sacchi et al. 2022; Lusso et al. 2020;
Bisgoni et al. 2021) and joint analyses of quasars along with
other cosmological probes (Bargiacchi et al. 2022). These
findings, if true, would be an important new procedure for
using extragalactic sources with wide dispersion in their
luminosity (i.e., sources far from being a “standard candle”)
for precision cosmological studies on par with near-standard
candles like Cepheid variables and Type Ia supernovae, but
extending to higher redshifts.

The main aim of this Letter is a close scrutiny of the basics
of the procedure proposed by RL and to point out some of its
shortcomings. Before getting into details, it is important to
emphasize several crucial aspects of the procedure.

The first is that this is a purely phenomenological method of
using the correlation between observed fluxes, or deduced
apparent luminosities, that have no direct or obvious relation to

the astrophysics of the sources. That this is true for a
correlation between fluxes is obvious. As has been pointed
out in many publications, it is also true for an apparent
correlation between luminosities (L–L correlation). Using
nonparametric methods developed by Efron & Petrosian
(1992) (EP) in several publications (e.g., Singal 2013; Singal
et al. 2016; Zeng et al. 2021), we have shown that the observed
L–L correlations (and luminosity and redshift distributions)
quantitatively and qualitatively are very different from intrinsic
ones due to (1) multidimensional observational selection effects
that truncate the data, (2) the common dependence on the
calculated luminosities on distance or redshift, and (3) possible
difference in the redshift evolution of the luminosities in
different wave bands. In a recent work (Singal et al. 2019),
using analytic methods and simulations, we explored in depth
to what extent apparent correlations in multiwavelength flux-
limited data are indicative (or not) of intrinsic correlations and
hence the physics of the accretion disks, jets, and character-
istics of supermassive black holes, confirming the above
findings with actual data. In a more recent paper (Singal et al.
2022), we find similar differences between the observed and
intrinsic L–L correlation in the X-ray and UV wave bands (the
particular wave bands used by RL). An analysis, also using the
EP method, by Dainotti et al. (2022) agrees qualitatively with
this result with a somewhat different luminosity evolution rate
in the X-ray band. However, it should be emphasized that the
phenomenological method used by RL is independent of such
differences between the apparent and intrinsic L–L correlation.
As will be clear from the description of the method given
below, one could use either correlation leading to the same
result.
The second is that even in the phenomenological approach

one has to include the effects of the flux truncation (induced by
observational selections process) on the observed correlations.
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This could change the result only quantitatively but not
qualitatively. Consequently, we will ignore this effect.

Finally, as mentioned above, X-ray/UV (L–L) correlation is
not unique. Quasars and other active galactic nuclei (AGNs)
show similar nonlinear L–L correlations in other pairs of wave
bands: radio–optical (e.g., Singal 2013), mid-infrared–optical
(e.g., Singal et al. 2016), and optical–gamma-ray (Zeng et al.
2021). Thus, if there is any deviation from ΛCDM in one pair
of wave bands, the same should be true in other pairs.

In this work. we explore the question of whether the
correlation between two wave-band luminosities (or observed
fluxes) can be used at all to reliably achieve an independent
determination of the distance–redshift relation as was done
in RL and subsequent works. In Section 2, we discuss the
potential logical issues with such a method. In Section 3 we use
some numerical analysis to quantify the reasons for the
apparent deviation obtained by RL and explore how the
procedure can lead to misleading results. A brief summary and
some discussion is presented in Section 4.

2. Analytic Considerations of the Basic Problem

The RL method relies on the assumption that if the degree
and form of the correlation between the luminosities in two
different wave bands (in their case, the X-ray and UV bands)
can be deduced, then given observed fluxes in the two bands
and redshifts, one can determine the dependence of the
luminosity distance function DL(z) on redshift. To explore the
validity of this method, we use two different possible
approaches to the problem.

A. Starting from L–L correlation:
Following RL, let us assume that the L–L correlation can be

expressed with a power law with index γL and (the
dimensionless) proportionality constant BL as4

( ) · ( ( )) ( )L z B L z . 1Lx UV L= g

An important requirement of the procedure proposed by RL
is that γL and BL are independent of the cosmological model;
they could depend on redshift but not cosmological parameters
ΩM, ΩΛ, etc. To start with, following RL, we assume that these
parameters are constants (i.e., independent also of redshift), but
as will be evident from the formalism presented below, this
assumption is not actually required for the proposed procedure
to work. The luminosity–flux relation for a generic wave band
a is

( )
( )

( )F
L K z

D z4
, 2a

a a

L
2p

=

where DL(z) is the luminosity distance and Ka(z) is the K-
correction factor.5 To simplify the algebra for the moment, we
can ignore the small effect of the K-correction or use rest-frame
fluxes, Fr(z)= F(z)/K(z), at a well-defined frequency band (or
monochromatic flux). Then, substituting this in Equation (1), it
is easy to show that we obtain the redshift dependence of the

luminosity distance as
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which, as stressed above, would be the case even when the fit
parameters BL and γL depend on redshift but not the
cosmological model. RL then used the measured fluxes in the
X-ray and UV bands to determine the luminosity distance as a
function of redshift.6

However, there are many unsupported assumptions in this
procedure, the most important of which is that the correlation
form in Equation (1) is independent of a cosmological model.
In general, the L–L correlations are usually based on
luminosities determined from observed (or rest-frame) fluxes
using Equation (2), which requires an assumed cosmological
model that gives the required luminosity distance function
DL(z) (as was done to plot the luminosity versus redshift in
Figure 1 of RL). In that case, it is obvious that the above
procedure is logically circular and the method should return the
assumed form of the luminosity distance used in calculating the
luminosities, modulo observational uncertainties, numerical
errors, and neglect of truncation effects.
If one uses the luminosity evolution (LE)-corrected lumin-

osities ( )L L g za a a¢ = , where ga(z) describes the LE in wave
band a, one could follow the above steps using the intrinsic (or
de-evolved) L′–L′ correlation, with ( )B z¢ and ( )zg¢ possibly not
equal to B(z) and γ(z). This leads to the same final results
(Equation (3)) with the addition of the LE factors of gx(z) and
gUV(z), but still suffering from the same circularity because one
must assume a form for DL(z) to determine the LE functions
and the intrinsic correlation Lg¢ . Dainotti et al. (2022) use this
(circular) procedure and obtain a similar result to RL. This is
probably because the LE factors they obtain for the X-ray and
UV bands are similar, which yields ( ) ( )z zg g¢ ~ . See also the
discussion below.
B. Starting from the F–F correlation:
On page 2 of their paper, RL indicate that their calculation of

the correlation index γ is “cosmologically independent”—i.e.,
independent of a specific cosmological model and therefore of
the luminosity distance—which must mean that in their figure
showing γ versus redshift (supplementary Figure 16), the
correlation indices are obtained using the correlation between
fluxes, FUV and Fx, in redshift bins zi to zi+Δzi assuming a
power-law correlation:

( ) · ( ) ( )( )F B z F . 4f
z

x UV f= g

In general, both the proportionality constant Bf and index γf
could vary with redshift. In Figure 8 of the supplementary
material, RL show variation of both quantities with redshift.
There are small variations of γf, with an average value of
γf= 0.607± 0.05, and ( ) ( )z B zlogf fb = increasing with red-
shift almost monotonically from 3.8 to 4.5 over the redshift
range z= 0–4.7 RL use a constant value for γf, but it is not clear

4 We express the luminosities in units of some fiducial luminosity, L0, whose
value is irrelevant but renders the proportionality constant BL dimensionless.
Note also that RL describe the L–L correlation in log space, obtaining γ as the
slope of the linear regression fit and intercept BlogL Lb = .
5 In some publications (e.g., Bloom et al. 2001), the inverse of this is defined
as the K-correction. We use the original definition given by Oke & Sandage
(1968) for galaxies.

6 It is clear that the method fails for a linear correlation, γL = 1, thus the
requirement of nonlinearity. In what follows, we assume that γL < 1, which
seems to be the case of interest here, using LX as the dependent variable. In the
opposite case, one would have γL > 1.
7 There is some apparent ambiguity as to whether RL use a value of
γ = 0.633 as seems to be indicated in their main paper or γ = 0.607 as
indicated in their supplementary paper, but the precise value is not important
for our analysis.
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if the same is assumed for Bf(z), or whether its variation with
redshift is included in the analysis. As will be clear, the exact
values of these parameters and whether they are constant or
vary with redshift, do not change the arguments presented
below. In fact, using a larger sample of quasars analyzed in
Singal et al. (2022), we find large variation of γf(z) (especially
for small redshift bins) with a smaller mean of 0.36 shown in
Figure 1.

Starting from Equation (4), it is important to note that
correlation parameters calculated from fluxes cannot be
substituted for correlation parameters needed for luminosities
because the L–F relation depends on ( )D zL

2 .
Let us first consider the relation between the two power-law

indexes, γf(z) and γL(z) (which for maximal generality we will
let vary with redshift) and the possibility that γL(z)= γf(z)
independently of the cosmological model. The first possibility
is if γfʼs are obtained using infinitesimally small redshift bins,
within which the variation of ( )D zL

2 is small and can be
ignored. From Figure 16 in their supplementary paper, it
appears that RL are using 10 bins spanning the redshifts from 0
to 4, with the largest bin spanning from z=∼2.7 to z= 4. The
above assumption is clearly not valid for this bin with

D D 0.8L L
2 2D á ñ ~ (and not negligible), where the claimed

deviation of the luminosity distance model from ΛCDM is
most significant.

The second possibility is that we have prior knowledge that
the LE in the two bands are identical. In that case, the L–L
correlation will be a scaled (by ( )D z4 L

2p ) version of the F–F
correlation, yielding γL(z)= γf(z). We note that RL and many
subsequent papers ignore the possibility of LE. As mentioned
above, Dainotti et al. (2022) find somewhat similar (but not
identical) LEs for the X-ray and optical–UV bands, indicating
that this equality is approximately true. However, in Singal
et al. (2022), using a more rigorous accounting of the X-ray
flux threshold, we obtain very different LEs.

But even assuming that these uncertainties can be ignored,
let us follow RL and set γL(z)= γf(z)= γ(z), assuming that
γL(z) is independent of the cosmological model, and consider

the relation between the two proportionality constants. If we
replace the fluxes in Equation (4) by luminosities using
Equation (2), still ignoring the K-corrections, we obtain

( ) ( ) ( ) [ ( )] ( )( ) ( )L z B z L z D z4 . 5x f
z

L
z

UV
2 1p= ´ ´g g-

Comparing this with the required relation in Equation (1), we
find

( ) ( ) [ ( )] ( )( )B z B z D z4 , 6L f L
z2 1p= ´ g-

which clearly is not independent of the luminosity distance and
the cosmological model, a strict requirement of the procedure
to yield an independent determination of the luminosity
distance function. If now one substitutes this form of BL(z) in
Equation (3), the luminosity distance ( )D zL

2 simply cancels out
and one recovers Equation (4), which is where we started from.
Thus, we conclude that we are dealing with pure tautology and
that there is no logical procedure for recovering DL(z). We
emphasize again that this conclusion is true whether or not γ(z)
varies with redshift or is actually a constant, and even if one has
infinitesimally small redshift bins and identical LE in the two
bands so that the assumption γL(z)= γf(z)= γ(z) is valid.
In summary, the procedure proposed by RL is either

logically circular or pure tautology, leading to the inevitable
conclusion that it is not possible to arrive at an independent
determination of the luminosity distance function DL(z) using
either the correlation index γL calculated from the luminosities
or γf calculated from the fluxes. The former has an inescapable
a priori dependence on the form of DL(z), resulting in a logical
circularity, and the latter has no relation to DL(z).
One may ask why, in light of the circular or tautological

aspects discussed above, did RL not obtain the DL(z) function
of the ΛCDM cosmology (or fail numerically) when they
carried out their analysis. We explore this issue in the next
section.

3. Exploring the RL Method with Quasar Data

Given the considerations of Section 2, any analysis that
attempts to use flux–redshift data to determine DL(z) based on
Equation (3) should return the luminosity distance function of
the assumed cosmological model (here ΛCDM). However, RL
and subsequent works (e.g., Khadka & Ratra 2020; Dainotti
et al. 2022) obtained a DL(z) function that deviates from that of
the ΛCDM cosmology, favoring a larger value for the matter
density Ωm and an evolving dark energy equation of state.
The formalism presented above indicates that there is a

degeneracy between the assumed redshift dependencies of DL

and the correlation parameters B and γ, irrespective of whether
we start with Equations (1) or (4). It is clear from Equations (3)
and (5) (or (6)) that this degeneracy takes the form of

( ) ( ) ( )( ( ) )D z B z . 7L f z
1

2 1µ g -

This indicates that an important source of this discrepancy
found by RL is that they did not include the redshift
dependence of Bf(z).
As the above equation shows, an increase with z of Bf(z),

and/or decrease of γ(z) (for γ(z)< 1), can give rise to a value
for DL(z) that is increasingly lower at higher zʼs than the true
luminosity distance. In the opposite case, one would get a
higher DL(z). For example, an increase of ( ) ( )z B zlog fb =
from 3.8 to 4.5 (∼20%) obtained by RL, mentioned above, will

Figure 1. A determination of the best-fit power-law correlation between the
X-ray and UV fluxes of quasars, in the form of Equation (4), as determined for
the data set assembled in Singal et al. (2022). Results, with statistical
uncertainties, are shown for both 10 (stars) and 100 (red pluses) bins of redshift
with equal numbers of objects, in respective bins. The average value in each
case is close to γf = 0.36. These results evidence a significantly larger
dispersion than those obtained by RL.
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cause a ∼25% decrease in DL for γ∼ 0.6, which is about
what RL obtained.

To further demonstrate this effect, in Figure 2 we compare
the luminosity distance as would be obtained by Equation (3)
for two values of the index γ: γ= 0.633 obtained by RL and
γ= 0.28, which we obtain using the intrinsic L L¢ - ¢
correlation obtained in Singal et al. (2022). For this purpose,
following RL, we assume no redshift dependence for both Bf

and γ. As in RL, we fit the determined DL(z) for γ= 0.28 points
to a third-order polynomial in ( )zln 1 + , fixing the terms so
that it approaches DL(z)= (c/H0)z for z= 1:

( ) ( ) ( )( )
( ) ( )

D z c H x a x a x
x z

ln 10 ,
with log 1 . 8
L 0 2

2
3

3= + +
= +

Figure 2 shows the result of this fit as the black curve. We
also show the DL(z) curve obtained by RL for γ= 0.63
(dashed–dotted blue line) and for ΛCDM (red dashed). A larger
deviation from ΛCDM is obtained (at high z) for a smaller
value of γ (for B(z) increasing with z) as predicted by
Equation (7). An additional possible source of the apparent
deviation in DL(z) from that of ΛCDM, investigated by Yang
et al. (2020) and Banerjee (2021), is that the polynomial
expansion of Equation (8) generically fails to recover flat
ΛCDM beyond z∼ 2. Furthermore, Khadka & Ratra (2020)
have shown that the deviation in DL(z) from that of ΛCDM
in RL is not as statistically significant as claimed.

4. Summary and Discussion

We find in Section 2 that the method of determining the
luminosity distance as a function of redshift (and hence
cosmological parameters) from the observed (nonlinear)
correlation between two luminosities or fluxes in a population
quasars, proposed by RL and utilized in the subsequent works,
Salvestrini et al. (2020), Sacchi et al. (2022), and Bisgoni et al.
(2021), suffers from a fatal logical inconsistency inherent in the
method. It is either circular or tautological.

Determinations of the luminosity distance function com-
monly involve establishing a correlation between (i) a distance-
independent characteristic, such as the oscillation periods of
Cepheid variable stars or the decay times of Type Ia
supernovae, and (ii) a distance-dependent quantity, such as
the luminosity in a wave band (which is distance dependent via
the flux–luminosity relation). If such correlations are redshift,
or in general, distance, independent, then one can use the
“Hubble diagram” to get the luminosity distance, otherwise one
needs to take into account how the relevant parameters may
change with redshift. This condition is more difficult to
establish in attempts to use gamma-ray bursts utilizing
relationships between the peak spectral energy and the total
energy or peak luminosity (e.g., Yonetoku et al. 2004; Amati
et al. 2008). The method of Risaliti & Lusso (2019) and
subsequent works is significantly different as it attempts to use
the nonlinear correlation between two distance-dependent
quantities, namely luminosities in two different wave bands
(here X-ray and UV). If valid, this would be a new
revolutionary method of determining cosmological parameters
from extragalactic sources, such as quasars, or more general
AGNs, with rich observations at many different wave bands
from radio to gamma-rays.
We have argued that the only way the proposed method

would work is if the exact form and parameters of correlation
between two luminosities is determined independently of the
cosmological model (and hence DL(z)) and without use of the
observed fluxes, such as would be obtained from a purely
theoretical physical model of the emitting system. If the L–L
correlation is obtained, as is commonly the case, from
measured fluxes and redshifts, which require knowledge of
DL(z), then the method suffers from circularity and should
return the assumed DL(z), modulo observational and numerical
errors, and other uncertainties. An alternative approach of
simultaneous optimization over both cosmological parameters
and luminosity correlation parameters as was done by Khadka
& Ratra (2021a) and Khadka & Ratra (2021b) is a promising
possibility, which apparently leads to no statistically significant
deviation from ΛCDM.
However, RL obtain correlation parameters using redshift-

binned flux–flux correlations. They assume a power-law
correlation with two parameters: the power-law index γf(z)
and the proportionality parameter Bf(z) in Equation (4), both of
which show some variation with redshift in their analysis. The
basic idea they propose is that given infinitesimally small
redshift bins, within which the DL(z) change is negligible, then
one can use these parameters for the same form of the L–L
correlation with γL(z)= γf(z) and BL(z)= Bf(z). As we discuss
in Section 2, there are several problems with this procedure:

1. Some redshift bins used by RL span a wide range of
redshift and cannot be consider infinitesimal. As shown in
Figure 1, using smaller bins one obtains much larger
variation of γf than the 10 bins used by RL. Additionally
we obtain a significantly different value for γf than RL in
our analysis with a joint X-ray and UV data set of
quasars.

2. RL ignore the small variation of γf shown by their data.
Nevertheless, let us follow RL and ignore this variation
and set γL= γf= γ.

3. They also seem to ignore the relatively significant
monotonic variation they obtain for Bf(z), and, most
importantly, assume that the same is true for BL(z). As we

Figure 2. DL(z) as would be determined by Equation (3), the method of RL,
utilizing an X-ray and UV data set of quasars analyzed in Singal et al. (2022).
The points show DL(z) for individual quasars as determined for γ = 0.28
obtained by Singal et al. (2022), while the solid black line shows the best-fit
curve of the form Equation (8) for these points. The dashed–dotted blue line is
the result reported by RL for γ = 0.633. The dashed red line shows DL(z) for
ΛCDM. As evident, a lower value of γ yields a larger deviation from ΛCDM at
high z, as discussed in Section 3.
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have shown, this is manifestly not well founded and when
changing variables from fluxes to luminosities (related
through DL(z)), one gets a proportionality constant BL(z)
that depends on DL(z) (independent of whether the
variation of Bf(z) is significant or not) in a way that DL(z)
drops out of the relation, making the argument pure
tautology.

Finally, in Section 3 we show that the likely reason RL
obtained a luminosity distance function that deviates from the
ΛCDM model is related to the fact that they ignore the redshift
dependence of Bf(z) and additionally, because of a potentially
questionable method of fitting of DL to redshift. As we
demonstrate, the deduced DL(z) depends on Bf(z) and γ(z) (see
Equation (7)) in a way that explains the deviation downward
from the ΛCDM model that they find at high z, shown in
Figure 2. It is our conclusion then that the procedure proposed
by RL is not an appropriate method for constraining the
luminosity distance function or cosmological parameters.

This work relies in part on data analyzed in Singal et al.
(2022), which was obtained from the Sloan Digital Sky Survey
(SDSS), and the Chandra and XMM-Newton X-ray observa-
tories. Funding for the SDSS and SDSS-II has been provided
by the Alfred P. Sloan Foundation, the Participating Institu-
tions, the National Science Foundation, the U.S. Department of
Energy, the National Aeronautics and Space Administration,
the Japanese Monbukagakusho, the Max Planck Society, and
the Higher Education Funding Council for England. The SDSS
Web Site is http://www.sdss.org/. This research has made use
of data obtained from the Chandra Source Catalog, provided by
the Chandra X-ray Center (CXC) as part of the Chandra Data

Archive. This research has made use of data obtained from the
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