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The increasing demand for distributed energy and active load increases the risk of
voltage violations in active distribution systems. This paper proposes a distributionally
robust transactive control method for local energy trading and network operation
management of active distribution systems with interconnected microgrids. In
particular, the emerging SOP technology is used for the flexible connection of
the multi-microgrids (MMGs). First, the local energy interactive market between
distribution network operator (DNO) and regional microgrids is constructed to
simultaneously solve the economic and security problems of distribution
networks considering the energy trading scenarios and various operational
constraints. Then, the dual relaxation technique is used to transform the two-
layer structure model into a single-layer model. Furthermore, the single-layer
game model is further transformed into a two-stage distributed robust problem
considering the uncertainties of load demand and renewable power outputs, and the
second stage of the problem is decomposed into multiple parallel subproblems
without dual information. Finally, numerical simulations on IEEE-33 test system verify
the advantages and effectiveness of the proposed method.
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1 Introduction

The improvement of renewable energy penetration has promoted the transformation of
traditional distribution network to active distribution systems, which puts forward higher
requirements for efficiency, flexibility and responsiveness of the system. MMGs are considered
as an emerging network design in active distribution systems (Yang et al., 2020a; Xu et al., 2020).
Information exchange and energy sharing can be achieved through flexible interconnection of
MGs (Yang et al., 2020b). It has significant advantages in power loss reduction, operation cost
saving, and system reliability enhancement. The existing researches on MGs often pursues the
economic benefits of individual microgrid, merely considering this objective could undermine
the operation performance by causing nodal voltage violations. Therefore, it is imperative to
resolve the economic and operational problems of the active distribution systems with MMGs
in a holistic manner through joint optimization of energy trading and system operation.

Recent efforts have focused on the transactive control method for active distribution
systems with MMGs, which can be classified into two categories: direct control-based and local
energy market-based methods. The control-based methods (Yang et al., 2020a; Zhou et al.,
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2020) are designed from the point of view of the DNO to determine
direct control commands for all controllable parts by collecting all
the information from MGs. Although this kind of methods are
easy to be implemented, it has potential shortcomings such as poor
scalability and low transparency, and it cannot give play to the
flexibility of the users. The method based on the local energy
market is different from the above method. This method ensures
the consistency of control decisions by decentralized coordination
of different entities in the distribution network (Yan et al., 2021).
Thus, the regional microgrid can effectively manage the internal
distributed energy, and protect the interests of the system (Liu
et al., 2020). Recent studies about local energy markets mainly
includes multiagent-based (Jadhav et al., 2019), game theory-
based (Anoh et al., 2020), auction theory-based (El-Baz et al.,
2019; Esfahani et al., 2019) methods, and semi-market-based
method under supervision (Park et al., 2016). Although the
above research provides a reference for building a local energy
market, there are still many limitations.

1) Neglecting the joint research on the economic problems of multi-
microgrid transactions and the technical problems of distribution
network operation. The voltage regulation and the economy of the
whole systemmay not play an optimal role simultaneously (Ji et al.,
2019).

2) Neglecting the uncertainty of distributed energy and demand of
users. The deviation between the result and the actual existence will
increase, which will lead to improper regulation of physical
components in the system. This situation not only makes the
result of economic optimization deviate from the reality, but also
may bring security problems to the distribution network system.

Therefore, an optimization model of energy interactive regulation
based on the local energy market is constructed. This model can not
only eliminate voltage violations, but also maximize the flexibility and
economy of distribution network.

As for the interactive control of distribution network
constraints, the early research mainly focused on resource
management of microgrid and market clearing algorithm
(Esfahani et al., 2019; Yang X et al., 2021). The interactive
operation between agents is often ignored, and the application
of SOP associated with energy trading has not been fully studied.
As a new type of fully controlled power electronic device, SOP
has fast response speed (Ji et al., 2019; Yang Z et al., 2021), and
can accurately and continuously realize the characteristics of
active/reactive power regulation of connected feeders (Yan et al.,
2021). Therefore, this paper introduces SOP in the distribution
system of local energy market to reduce the impact of distributed
energy transactions on system power flow and improve the
economy of the overall distribution network operation.

Secondly, as for how to effectively deal with the problem that
the uncertainty of renewable energy and demand of users has a
serious impact on the system (Park et al., 2016), the existing
research schemes mainly include stochastic optimization (Liu
et al., 2017; Guo et al., 2021), robust optimization (Zhao et al.,
2020; Li et al., 2021) and distributed robust optimization (Wang
et al., 2016; Liu et al., 2019; Ding et al., 2022). Among them,
stochastic optimization depends on the known probability
distribution, and it is easy to ignore the external influences
such as risks and the characteristics of different internal

distributions, which will lead to too little consideration in
decision-making. Although robust optimization only needs to
use the set reflecting the change range of uncertain factors (Li
et al., 2021), it only optimizes the goal in the worst case, which will
lead to the result being too conservative and the income cannot
reach the optimal value. Based on the above two methods, this
paper uses the distributed robust optimization method to solve the
optimal value under the uncertainty environment. The results
obtained are robust while avoiding excessive conservatism.

The contributions of this work are summarized as follows:

1) A two-stage distributed robust energy trading regulation model is
proposed for active distribution system. The two-level problem is
decomposed into several parallel subproblems to avoid the need for
dual information like traditional distributed robust optimization
(DRO) according to the special two-phase scenario designed in this
paper.

2) This paper considers various operation constraints, which is
different from most existing researches that only focus on the
transaction mechanism, and proposes a comprehensive
decision-making method. SOP technology is introduced for
flexible interconnection between multi-regional microgrids to
actively improve system power flow and achieve security
regulation of voltage and economic operation of transactions.

3) This paper uses KKT conditions, duality, linearization and
relaxation techniques to transform the two-layer game problem
into a single-layer MISOCP problem. In the case of many uncertain
individuals as in this paper, this method is conducive to improving
the efficiency of decision-making.

The rest of the paper is organized as follows. Section 2
introduces the transactive control architecture for active
distribution systems with SOP-connected MMGs. In Section 3,
the formulas of DNO and multi-microgrid optimization models
and the conversion process of two-layer models are described in
detail. The system uncertainty model based on distributed
robustness is introduced in Section 4. In Section 5, the case
study of interactive regulation architecture is introduced and
discussed. Finally, conclusions are drawn in Section 6.

FIGURE 1
Architecture of distribution network system with MMGs.
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2 Proposed transactive control
framework

The active distribution system with MMGs is built, as shown in
Figure 1.

In this paper, the on-load tap changer (OLTC) is used to connect
the distribution network with high voltage (HV) system, and the
distribution network is divided into three regional microgrids. The
regional microgrid includes distributed energy [mainly including
photovoltaic array (PV) and wind turbine (WT)], energy storage
system (ESS), general load and transferable load. SOPs are also
used in the distribution network system to connect the regional
microgrids, so as to conduct more accurate and rapid power
regulation, and prevent transaction congestion.

Distribution network operator (DNO) is introduced as the
intermediary between the HV and the regional microgrids, which
is mainly responsible for the following: 1) Monitor and manage the
operation of the distribution network to ensure that the system meets
the constraints of safe operation and the stability of system voltage; 2)
Different from other studies in which the microgrid directly trades
with the HV, DNO is given the right to control andmanage the trading
volume between the distribution network and the HV, so that it can
dynamically distribute the internal energy of the distribution network
and improve the local energy consumption; 3) Participate in the local
energy market between DNO and the regional microgrid, and
dynamically adjust the clearing price by referring to the power
demand of users, so as to minimize the operating cost.

As the main body participating in the local energy market on
behalf of users, the regional microgrid is mainly responsible for the
following: 1) Collect the electricity demand of all users in the region,
and use it as a bargaining chip with DNO. The electricity demand is
adjusted independently and flexibly to minimize the cost for users
according to the clearing electricity price; 2) Manage the charging and
discharging of energy storage systems to improve the local utilization
rate of distributed energy.

In the transaction process of the local energy market, DNO needs
to fully consider the dynamic feedback from users due to the price.
Microgrids can decide their own power consumption strategy
dynamically and flexibly according to the price (Lei et al., 2022).
This process achieves the efficient operation of the overall system and
improve the local consumption capacity of distributed energy (Xu
et al., 2022). Furthermore, due to the uncertainty of distributed energy
and load demand, there will be large deviation between the results
obtained and the expected results, which will result in voltage
deviation. In order to balance the interactive benefits and
scheduling performance, this paper constructs a transactive control
architecture for active distribution systems with SOP-
connected MMGs.

3 Model formulation

3.1 Optimization model of DNO

For the DNO, its objective is to achieve power loss reduction and
voltage regulation, andminimize the system operation cost. Therefore,
the optimization model of the DNO can be expressed as follows.

min FDNO x( ) � αo fHV + floss + fswitch − fMGs( ) + βvfvoltage (1)

where αo and βv are the weight coefficients which can be determined
by a subjective weighting method (Li et al., 2017). floss, fswitch, fHV

and fMGs are the network losses cost, adjusting cost of OLTC, grid
cost, and the income from MGs, respectively. fvoltage represents
accumulated voltage deviation, the specific expression above is as
follows.

floss � Closs ∑T
t�1

∑
ij∈ΩB

rijI
2
t,ij +∑T

t�1
∑N
i�1
PSOP,loss
t,i

⎛⎝ ⎞⎠Δt

fswitch � ∑
ij∈ΩO

∑T
t�1

COLTC Kt,ij −Kt−1,ij
∣∣∣∣ ∣∣∣∣( )

fHV � ∑NT

t�1
gt[ ]+γbt − −gt[ ]+γst{ }Δt

fMGs � ∑NT

t�1
∑Nmg

n�1
λtP

net
t,nΔt

fvoltage � ∑NT

t�1
∑NN

t�1
U2

t,i − Ũ2
ref

∣∣∣∣∣ ∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where [.]+ represents a projection operator on a non-negative
orthogonal. For example, [P]+ � max(P, 0).

1) Network constraints of the DN. The widely used Distflow branch
model is adopted to model the DN as described in the following (Li
et al., 2017; Cao et al., 2022).

∑
ik∈Ωl

Pt,ik − ∑
ji∈Ωl

Pt,ji − rjiI
2
t,ji( ) � Pt,i (3)

∑
ik∈Ωl

Qt,ik − ∑
ji∈Ωl

Qt,ji − xjiI
2
t,ji( ) � Qt,i (4)

U2
t,i − U2

t,j − 2 rijPt,ij + xijQt,ij( ) + r2ij + x2
ij( )I2ij � 0 (5)

I2t,ijU
2
t,i � P2

t,ij + Q2
t,ij (6)

Pt,i � PPV
t,i + PWind

t,i + PSOP
t,i − PL

t,i + dess
t,i − cesst,i( ) (7)

Qt,i � QPV
t,i + QWind

t,i + QSOP
t,i − QL

t,i (8)
QPV

t,i � PPV
t,i tan θ

PV
k (9)��������������

PPV
t,i( )2 + QPV

t,i( )2√
≤ SPVi (10)

The security constraints of the DN are presented as

U2 ≤U2
t,i ≤ �U

2 (11)
I2t,ij ≤ �I

2
, ∀t, i, j( ) ∈ Ωl (12)

Constraint Eq. 11) represents the system voltage limits, and
Constraint Eq. 12) represents the maximum line current capacity.

2) SOP operation constraints. In this work, the back-to-back voltage
source converters (VSCs)-based SOP device is utilized (Li et al.,
2017). The optimization variables of the SOP consist of the active
and reactive power outputs of the two VSCs, the relevant
operational optimization constraints are as follows.

i) Active/reactive power constraints.

PSOP
t,i + PSOP

t,j + PSOP,loss
t,i + PSOP,loss

t,j � 0 (13)
PSOP,loss
t,i � ASOP

i

���������������
PSOP
t,i( )2 + QSOP

t,i( )2√
(14)

QSOP
i

≤QSOP
t,i ≤ �Q

SOP
i (15)
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ii) Capacity constraints.���������������
PSOP
t,i( )2 + QSOP

t,i( )2√
≤ SSOPi (16)

3) Constraints of the OLTC.

The variables of the OLTC are considered as the action series of its
tap steps. For the constraint formula of OLTC, this paper refers to (Li
et al., 2017).

4) Transaction price constraint.

λt
min ≤ λt ≤ λt

max (17)
1
T
∑T
t�1
λt ≤

1
T
∑T
t�1
λt
max (18)

Eq. (18) indicates that the average price of internal electric energy
is not higher than the average price of power purchased from the
superior grid to protect the interests of power users.

3.2 Optimization model of microgrids

The Multi-microgrid optimization model includes the power
consumption plan of load demand in the trading market and the
charging/discharging regulation of ESS. The optimization model of
individual MG is given as follows.

minFMG � ∑NT

t�1
λtP

net
t,n Δt −∑NT

t�1
∑
i∈Sn

vDn PL,down
t,i + PL,up

t,i( )Δt +∑
∀t

∑Ne

e�1
CdegP

ess,c
t,i ηess,c + Pess,d

t,i

ηess,d
( )Δt

s.t.Pnet
t,n � ∑

i∈Sn

PL,unc
t,i + PL,up

t,i + PL,do
t,i( ) − PPV

t,i +∑Ne

e�1
cesst,e − dess

t,e( ) (19)

In Eq. (19), the first part represents the total cost of trading with DNO,
the second part represents the dissatisfaction with the transferable
load, and the third part represents the compensation cost for ESS aging
and degradation. vDn is the inconvenience sensitivity coefficient of MG
n (Yang et al., 2019), vDn ≥ 0.

This paper refers to (Xu et al., 2019; Yang X et al., 2021) for the
constraints of the charging/discharging power and charging state of
ESS. Similarly, the constraint conditions of demand response (DR)
refer to (Yang et al., 2019).

3.3 Transformation of the bilevel model

The decision optimization of DNO and microgrids is a two-layer
optimization, which can be solved through Stackelberg game. The
regional microgrid determines the operation status and the power
exchange according to the received electricity price. The power
exchange must meet the network constraints and match the
optimal solution of the microgrids. This requires an iterative
process to obtain the equilibrium solution

Compared with the iterative solution of traditional two-layer game,
this paper considers that thedecision-makingoptimizationof the game is
affectedbyuncertain factorsandtheconvergenceofregionalmicrogrids is
asynchronous. In order to get the optimization results more quickly and
effectively, the two-layer optimization problem is transformed into a
single-layer optimization problem by constructing Lagrangian functions
and using KKT conditions and dual theory (Jin et al., 2021).

Because there are complementary constraints in the microgrids,
such as the energy storage system cannot discharge and charge
simultaneously, the relevant non-linear constraints are
complementary relaxed. Finally, the following single-layer master-
slave game problem can be obtained.

minFlequ � αo fHV −∑
t

∑
n

∑
i∈Sn

PL,f ix
t,i −PPV

t,i
−Pwind

t,i( )Δt+floss +fswitch
⎛⎝ ⎞⎠+βvFvoltage

⎧⎨⎩ ⎫⎬⎭
+∑

t

∑
i

{+∑
e

−μL,up2,t,i Lt,i
max −μL,down2,t,i Lt,i

max[ ]−μess,c2,t,e P
c,rat
e −μess,d2,t,e P

d,rat
e(

+μess1,t,eSe
min −μL2,t,eSemax)} (20)

s.t. Eqs. 3–18

0≤ μ ⊥ h x( )≥ 0 (21)
In Eq. (20), decision variables are λt,Kt,ij, P

sop
t,i ,Q

sop
t,i , P

L,up
t,i , PL,down

t,i ,
Pess,c
t,i , Pess,d

t,i . The decision variables of DNO include clearing electricity
price λt, the regulation of OLTCKt,ij, the active/reactive power of SOP
in each period Psop

t,i /Q
sop
t,i ; The decision variables of microgrids include

the load demand of DR PL,up
t,i /PL,down

t,i , and charging and discharging
power of ESS in each period Pess,c

t,i /Pess,d
t,i .

4 Reformulation based on distributed
robustness

4.1 Distributed robust model

Multi-scenario method is used to describe the uncertainty of load,
PV andWT. The above deterministic optimization model (i.e., Eq. (20))
is transformed into uncertainmodel. The conversion result is as follows.

minEπ J D[ ] � ∑
ω∈Nω

pωFlequ,ω

� ∑
ω∈Nω

pω ×
⎧⎨⎩αo fHV,ω −∑

t

∑
n

∑
i∈Sn

PL,f ix
t,i,ω − PPV

t,i,ω − Pwind
t,i,ω( )Δt + floss,ω + fswitch,ω

⎛⎝ ⎞⎠
+βvFvoltage,ω

⎫⎬⎭ +∑
t

∑
i

{ −μL,up2,t,i,ωLt,i
max − μL,down2,t,i,ω Lt,i

max[ ]
+∑

e
−μess,c2,t,e,ωP

c,rat
e − μess,d2,t,e,ωP

d,rat
e + μess1,t,e,ωSe

min − μL2,t,e,ωSe
max( )} (22)

Discrete adjustment variables, such as OLTC’s tap steps, are set as
the first stage variables z according to the flexibility and real-time of
the adjustment of each resource equipment, other continuous
variables, such as active and reactive power of SOP, clearing
electricity price and transferable load power, are set as variables in
the second stage xω, The following functions can be obtained.

minEπ J D[ ] �
min

z
max
pω∈Ωp

∑
ω∈Nω

pω min
xω

⎧⎨⎩αo
⎛⎝fHV,ω −∑

t

∑
n

∑i∈Sn PL,f ix
t,i,ω − P

PV

t,i,ω
− Pwind

t,i,ω( )Δt
+floss,ω + fswitch,ω

⎞⎠ + βvFvoltage,ω

⎫⎬⎭
+∑

t

{∑
i

−μL,up2,t,i,ωLt,i
max − μL,down2,t,i,ω Lt,i

max[ ] +∑
e
−μess,c2,t,e,ωP

c,rat
e − μess,d2,t,e,ωP

d,rat
e(

+μess1,t,e,ωSe
min − μL2,t,e,ωSe

max)} (23)

In order to ensure that the probability distribution of each scenario
from historical data is close to the actual operation scenario, the
uncertainty set of probability distribution is constructed by using the
comprehensive method of norm-1 and norm-inf to limit the allowable
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fluctuation range of the probability distribution of discrete scenarios.
The uncertainty set is as follows.

ψ � pω{ }
pω ≥ 0

∑Nω

ω�1
pω � 1

∑Nω

ω�1
pω − p0

ω

∣∣∣∣ ∣∣∣∣≤ δ1
max

1≤ω≤Nω

pω − p0
ω

∣∣∣∣ ∣∣∣∣≤ δ∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

δ1 � Nω

2K
ln

2Nω

1 − α1

δ∞ � 1
2K

ln
2Nω

1 − α∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (25)

Eq. (24) and Eq. (25) are the comprehensive constraints of norm-1
and norm-inf.

4.2 Model linearization and cone relaxation
transformation

1) Linearization. The Boolean variable κ is introduced to transform
the complementary relaxation constraint in Eq. (21) into a linear
inequality. The form is as follows.

0≤ μ≤Mκ (26)
0≤ h x( )≤M I − κ( ) (27)

Furthermore, variable replacement is used for linearization, that is, lt,ij
and vt,i are used to replace I2t,ij and U2

t,i in Eq. (3)–(5), (11) and (12),
respectively; The non-linear voltage deviation term in Eq. (2) is replaced by
the auxiliary variable Auxt,i. The specific process is shown in (Li et al.,
2017).

Because of the absolute value constraint in Eq. (24), the auxiliary
variables z+ω and z−ω are introduced to linearize the norm-1 constraint.
The norm-inf constraint is linearized, similarly. The obtained linear
constraint conditions are as follows.

z+ω + z−ω ≤ 1, ∀ω (28)
0≤p+

ω ≤ z+ωδ1 , ∀ω
0≤p−

ω ≤ z−ωδ1 , ∀ω
pω � p0

ω + p+
ω − p−

ω , ∀ω

⎧⎪⎨⎪⎩ (29)

∑Nω

ω�1
p+
ω + p−

ω( )≤ δ1 (30)

p+
ω + p−

ω ≤ δ∞ ,∀ω (31)

2) Cone relaxation. Eq. (6) can be transformed into a second-order
cone constraint through convex relaxation. The transformed
equality constraint is as follows.

TABLE 1 PROCEDURE of modified C&CG ALGORITHM.

Algorithm 1 modified C&CG algorithm

1: Initialization: set LB = −∞, UB = +∞, m = 0, and tolerance ε. Get initial worst-case probability p0
ω through scenario generation method

While UB − LB> ε do

2: Obtain the worst-case probability pm
ω *, solve the master problem (35)–(40). Derive an optimal solution z* and (G*, x1*, ..., xm*) and update LB = max LB, G*{ }

3: Fix z*, solve the subproblem (41)–(42) in parallel, yielding an optimal value f(z*) and worst-case probability pm
ω *. Update UB = min UB, f(z*){ }

If f(z*) are feasible then

4: Create variables xmω and add the new constraints to master problem

Update m � m + 1

End while

Remark 1: Compared with the existing methods, this paper optimizes the operation and economic performance of the local energy trading market, including the use of flexible components-SOPs, and

the design of the modified DRO, to improve the overall operating flexibility of the system. The novelties of proposed regulation method are summarized as follows.

FIGURE 2
Topology diagram of the IEEE 33-bus test system with three microgrids and three SOPs.
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2Pt,ij

2Qt,ij

lt,ij − vt,i

'''''''''''
'''''''''''
2

≤ lt,ij + vt,ij, ∀t (32)

PSOP
t,i( )2 + QSOP

t,i( )2 ≤ 2 PSOP,loss
t,i�
2

√
ASOP

i

PSOP,loss
t,i�
2

√
ASOP

i

(33)

(Palt
t,i )2 + (Qalt

t,i )2
≤ 2

Saltt,i�
2

√ Saltt,i�
2

√ , alt ∈ {SOP, PV,wind} (34)

Through above transformation processes, the non-linear
programming problem is transformed into MISOCP model, which
can be effectively solved by optimization solver (such as Gurobi and
CPLEX).

4.3 Distributed robust model solving

Eq. (23) is a min-max-min three-layer two-stage model. Columns
and constraints generation (C&CG) algorithm is used for iterative
solution (Li et al., 2022).

Themain problem is to solve the first stage optimal solution z* and
provide the updated lower bound value under the condition that the
worst probability distribution is known. The matrix vector form of the
original formula is used for the convenience of expression. The
expression is as follows.

min
z∈Z,x∈Xs,G

G (35)

G≥∑Nω

ω�1
pmp

ω ATxm
ω , ∀r � 1, 2, ...,M (36)

Cxm
ω ≤y (37)

Exm
ω � u (38)

Qix
m
ω +Hi

'''' ''''2≤ cTi x
m
ω + ρi (39)

Dxm
ω + Fz � f (40)

where∑Nω

ω�1p
mp

ω ATxm
ω represents the max-min part of Eq. (23);A,C, E,

D, F, Q, H, c, y, u, ρ, f represent the matrix or vector forms of the
corresponding models; Eq. (37) and (38) represent the relevant
constraints of variables in the second stage; Eq. (39) represents the
second-order cone relaxation constraints; Eq. (40) represents the
coupling constraints in the first stage and the second stage.

The subproblem solves the worst probability distribution value
pmp

ω of each scenario based on the z* given by the main problem, and
provides the updated upper bound value. The subproblem expression
is as follows.

max
pω∈Ωp

min
xω

∑Nω

ω�1
pm
ωA

Txm
ω (41)

TABLE 2 Relevant parameters of IEEE 33 bus test system.

Device Location Entity Parameter

PV unit Bus 7 MG3 500 kW

Bus 10 MG3 500 kW

Bus 24 MG1 400 kW

Bus 27 MG2 400 kW

WT unit Bus 13 MG3 1200 kW

Bus 30 MG2 1000 kW

Energy storage Bus 11 MG3 1.0 MWh, 0.2MW, .95

Bus 23 MG1 1.0 MWh, 0.2MW, .95

Bus 32 MG2 1.0 MWh,0.2 MW,0.95

SOPs Buses 12-22, 25-29, 18-33 DN Capacity: 1.0WVA

OLTC Bus 1-2 DN ±5 × 1%(include 0% × 1%)

FIGURE 3
Initial data of microgrid in each region: (A) Total load of microgrid in each region; (B) Photovoltaic output of microgrid in each region; (C) Output of
microgrid fans in each region; (D) Net load of microgrid in each region.
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It can be judged that each scenario in the second stage is
independent of each other, and the probability distribution
values and variables are independent of each other according to
the structural characteristics and scenario characteristics of the
subproblem. The subproblem can be divided into two parts. The
expression is as follows.

fω � minATxm
ω

xω

max
pω∈Ωp

∑Nω

ω�1
pm
ωfω

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (42)

If Eq. (42) has a feasible solution, a group of additional variables
xm
ω and related constraints need to be generated and added to the main

problem of the next iteration (Ding et al., 2018). The specific iterative
solution process is shown in Table 1.

1) It is high efficiency. The transformation of two-stage game
model and the use of the modified DRO method avoid
mutual coupling factors and improve the overall decision
efficiency.

2) It has better robustness and economy. It can improve power flow
distribution, achieve voltage and reactive power regulation, and
take into account the overall interests of the active distribution
systems in a flexible trading market.

5 Simulation studies

5.1 Base data

In this paper, IEEE-33 node system is used for testing, which is
divided into three regional microgrids (Li and Xu, 2019; Zhou et al.,
2019; Li et al., 2020) as shown in Figure 2.

The whole system includes four PVs, two WTs, three ESSs and
three SOPs. The relevant parameters are shown in Table 2. The loads
of the microgrid in each region, the output of PVs and WTs, and the
net loads are shown in Figure 3. The capacity of the installed SOPs is
set as 1.0 MVA. The percentage of demands that participates the DR is
assumed to be 20% (Yang et al., 2019; Cruz et al., 2020). The price of
electricity purchased by the distribution network from the HV is set
according to the reference (Jin et al., 2021), and the selling price of the
distribution network is set at 400 ¥/MWh. λt min is equal to the price of
electricity sold by the active distribution systems to the HV. λt max is
equal to the price of electricity purchased by the active distribution
systems from the HV. All the installed renewable generators are
operated at a unit power factor without considering the localized
reactive power support of renewables (Yang Z et al., 2021). Δt is set to
1 h. Referring to the setting in (Li et al., 2017), αo and βv are set to
.833 and .167, respectively; the limiting voltages �U/U are set to
1.05 p.u. and .95 p.u.; the correlation coefficient of network loss

FIGURE 4
Control result diagram of energy storage charge and discharge.

FIGURE 5
Control result of transferable load.

FIGURE 6
Dynamic chart of clearing price.

FIGURE 7
Transaction volume of each market entity.
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Closs is set to .08; the charging and discharging coefficient of ESS
Cdeg is set to 18.741 ¥/MWh; the allowable operation number of
OLTC �Δ OLTC is set to 4 times/day; and the initial tap step kij,0 and
tap step increment Δkij are set to 1.0% and 1%, respectively. The
proposed method in this paper was implemented in the YALMIP
optimization toolbox with MATLAB R2020a, and solved by
GUROBI 9.1.2.

5.2 Results and analysis

5.2.1 Impact analysis of local energy interaction
market

The energy storage system charging/discharging control and the
transferable load control are important regulation means for
microgrids to respond the DNO’s decision in local interactive
market. The results are shown in Figure 4 and Figure 5, respectively.

In the local interactive market, the price of electricity acts as a
“bridge” for DNO to transfer its decisions to the microgrids. The
transaction price is shown in Figure 6. The transaction volume of the
microgrids is shown in Figure 7.

Figures 4–7 show that the power generation of renewable energy
does not reach the peak, and the supply is less than the demand, which
makes the electricity price rise continuously in the peak period of
power consumption (6:00-10:00 and 15:00-20:00). Therefore, users
have to dynamically adjust their own power consumption strategy
(i.e., ESS discharge, load demand decreases) to maintain their own
interests in this period of time; The supply exceeds the demand, the
microgrid’s own power generation can meet the demand, and DNO
does not need to purchase power from the HV in the low peak period
of power consumption (0:00-6:00) and the peak period of renewable
energy power generation (11:00-14:00). This situation makes the
electricity price drop significantly, which attracts users to
dynamically adjust their own power consumption strategy (i.e., ESS
charging, load demand increase).

To sum up, the local consumption of distributed energy can be
achieved flexibly and the stability impact of the grid connection of
distributed energy can be reduced by building a local trading market
composed of DNO and regional microgrids. The electricity price is
used to indirectly mobilize users to participate in dispatching of active
distribution system by introducing market factors. This method
effectively prevents the operation safety problems, such as blockage
of grid lines during peak power consumption and low energy
utilization during low peak power consumption.

5.2.2 Model validation analysis
In order to verify the accuracy of the second-order cone relaxation

of the proposed model, the validation analysis of the model is carried
out in this section (Li et al., 2017). Gap value of the whole system in
each period is shown in Figure 8. It can be seen that the error values of
the whole system are all at 10–4. Therefore, the results calculated by the
proposed method achieve acceptable accuracy.

5.2.3 Case studies
This section compares the proposed decision-making method

with the other two models to prove its effectiveness. Specific cases
are defined as follows.

Case I. Economy-oriented transactive control. In this case, only
economy-concerned factors are considered, thus the power flow,
line power losses and voltage deviation are not included (Liu et al.,
2020).

Case II. Compared with Case III, this case does not consider the use
of SOPs.

Case III. The proposed method in previous sections.

FIGURE 8
Diagram of Gap value.

FIGURE 9
Comparison of the maximum and minimum voltages in the three
cases.

TABLE 3 Comparison results under different cases.

System performance Case I Case II Case III

Line power losses (kWh) 794.771 1486.419 784.708

SOP power losses (kWh) 481.468 — 478.863

Voltage deviation (p.u.) 58.729 28.064 16.531

Target value of DNO 339.678 562.562 456.998

Total cost of MGs (¥) 2148.485 2374.229 2158.872
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The comparison results of maximum and minimum voltage are
shown in Figure 9, the comparison results of OLTC control are shown
in Figure 12, and the comparison results of the relevant performances
are shown in Table 3.

The active/reactive power control results of SOPS in Case III are
shown in Figure 10. SOP1 is connected to microgrid one and
microgrid 3, SOP2 is connected to microgrid one and microgrid 2,
SOP3 is connected to microgrid two and microgrid 3. The voltage
fluctuation is shown in Figure 11.

Table 3 shows that the energy storage system and demand
response have been fully mobilized thanks to Case I does not need
to consider the violation of network constraints, which reduces the
cost of the microgrid. However, the results, which are compared with
Case III, have greater line loss and voltage deviation. And Figure 10
shows that voltage violation is increased, which causes a big potential
safety hazard to the operation of the actual active distribution system
and affects whether the actual transaction can be completed smoothly
and timely.

Compared with Case III, the line power losses and the cost in Case
II increase to a greater extent. Figure 9 and Figure 11 show that SOP
keeps the voltage amplitude strictly within the safe range (i.e., [.96,
1.04] p.u.), which adjusts the system power to eliminate voltage
violations and alleviates the problem of voltage rise. It proves the

advantages of SOP in solving the security problems of active
distribution system. Figure 10 and Figures 4–7 show that active
power control of the SOP is consistent with the action of energy
storage systems and the transferable loads in each regional microgrid.
This situation reflects that SOP can adjust the active power flow
distribution of the system flexibly and rapidly. The problem of
transaction delay or failure caused by route congestion can be
avoided through the connection between SOP and DNO.
Therefore, the power flow fluctuation caused by renewable energy
can be eliminated rapidly, and the economy of the overall operation of
the distribution network can be improved indirectly. Furthermore,
Figure 12 shows that the OLTC has less switching actions. The
economic cost of active distribution system can be effectively
reduced through the cooperation of SOP and OLTC.

To sum up, it can be verified that the proposed comprehensive
regulation method can give consideration to both operating economy
and voltage security, and propose a more efficient scheme for
consuming local distributed energy.

5.3 Convergence analysis of distributed
robust optimization

In this section, the DRO solution is tested and analyzed. Table 4
shows that the deviation between the main problem and the
subproblem in the algorithm reaches 10–3 levels of accuracy after
three iterations. This shows that C&CG algorithm can quickly solve
the distributed robust optimization model proposed in this paper.

5.4 Comparison of distributed robust
optimization methods

This paper assumes that the prediction errors of PV, WT and
DR follow the Normal Distribution which the mean is set to 0 and
the variance is set to .4 times of the predicted value (Ding et al.,
2018). 3000 error scenario data are generated by fitting to
represent the historical data. Finally, five typical scenarios are
selected for simulation analysis of distributed robust optimization
methods.

FIGURE 10
SOP active/reactive power control result.

FIGURE 11
Voltage magnitudes of all the 33 nodes.
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5.4.1 Comparative analysis of results under different
confidence intervals

In order to show the influence trend of different confidence on the
optimization results, and to prove the effectiveness of the
comprehensive norm compared with the single norm, the following
comparative analysis is made.

First, the results of distributed robust optimization under different
confidence intervals are compared when the comprehensive norm
constraint is adopted. Here, the range of α1 is [.2, .8], and the range of
α∞ is [.5, .99]. The results are shown in Table 5.

It can be observed from Table 5 that the value of the total cost
increases with the increase of the comprehensive norm confidence α1
and α∞. This situation shows that the increase of confidence interval
will increase the uncertainty contained in the system. This also means
that the distribution network system needs to optimize the transaction
content and call more resources (such as SOP) to eliminate the adverse
impact of uncertainty on the system operation. This is the reason why
the total cost of the system increases.

The results of comprehensive norm and single norm-inf are
compared. Here α∞ selects .99. The results are shown in Table 6.

It is shown that the results obtained by using the constraint
condition of comprehensive norm are smaller than those obtained
by using the norm-inf method. This means that comprehensive norm
has better economy. Moreover, the comprehensive norm and single
norm-1 results are compared. Here, α1 is selected as .5. The results are
shown in Table 7.

It can be observed from Table 7 that the calculated results of
comprehensive norm are smaller thanks to the constraint of
comprehensive norm further limits the fluctuation range of
uncertainty. This also means that the overall cost of the system is
lower and the conservatism of the results is improved.

According to the above conclusions, it can be proved that the
comprehensive norm is more effective than the single norm.

5.4.2 Analysis and comparison of distributed robust
optimization and other methods

This part will compare the stochastic optimization, robust
optimization and the DRO adopted in this paper. Here, the
stochastic optimization is calculated based on the scenarios known
by the distributed robust method, where the probability values of each
scenario are .2; The robust optimization uses .4 times of the predicted
value as the fluctuation range; The comprehensive norm constraint of
DRO that α∞ selects .99 and α1 selects .8. The comparison results are
shown in Table 8.

To prove the effectiveness of the distributed robust optimization
method in this paper, 6000 random probability distribution
combinations are randomly generated based on the prediction
scenario, and three result schemes are implemented to obtain the
mean value of the expected cost of the probability distribution. The
results are shown in Table 9.

According to Table 8 and Table 9, although the optimization result
of stochastic optimization based on known scenarios is the smallest,
the result is always greater than that of distributed robust optimization
when the randomness of scenarios is fully considered. This situation
indicates that its robustness is obviously insufficient to that of
distributed robust optimization. Because robust optimization only
considers the worst scenario information, the result of network loss
and cost is the largest.

Compared with the other two methods, the performance and
cost of DRO are in the middle, and the expected mean value of the
probability distribution cost is lower than the other two methods.
This shows that its probability distribution average performance is
better than the other two methods, which reflects its good balance

FIGURE 12
Comparison diagram of OLTC control results.

TABLE 4 Results of iterative convergence.

Iterations Upper bound Lower bound

1 457.032 452.890

2 457.028 456.697

3 456.998 456.998

TABLE 5 The results of Comparison under different confidence intervals.

α1 α∞

.5 .8 .99

.2 454.001 455.213 456.945

.5 454.866 455.267 456.998

.8 454.891 455.433 456.998

TABLE 6 Comparison of result between comprehensive norm and norm-inf.

α1 Target value

Comprehensive norm α∞

.2 456.945 467.208

.5 456.998 467.208

.8 456.998 467.208

TABLE 7 Comparison of result between comprehensive norm-inf and norm-1.

α∞ Target value

Comprehensive norm α1

.5 454.866 461.967

.8 455.267 461.967

.99 456.998 461.967
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in economy, conservatism and security and have better adaptability
under the actual uncertainty environment.

6 Conclusion

In this paper, a distributionally robust transactive control method for
active distribution systems with SOP-connectedMMGs is proposed. First
of all, the constructed local energy interactive market fully considers the
system operation safety factors such as voltage quality, so that it can
operatemore safely, while ensuring the overall economy and the flexibility
and autonomy of users. Secondly, SOP is introduced into the active
distribution systems based on the local energy market, and associate it
with DNO. This significantly reduces the line loss and voltage deviation,
maintains the economic interests of each subject, and further improves the
flexibility of internal transactions of active distribution systems. Then,
KKT conditions, relaxation techniques and other techniques are used to
transform the two-layer game problem into a single-layer MISOCP
problem. The optimization of the complex coupling model is
achieved, and the efficiency of the operation is improved. Thirdly, the
modified DRO optimization method is combined with the active
distribution system. Compared with the traditional stochastic and
robust methods, the DRO method achieves a better balance in terms
of economy and conservatism, and has better economy and uncertainty
adaptability. Finally, the conservative strategy of the integrated regulation
method can be flexibly adjusted by changing the confidence level of the
ambiguity set. This situation shows that the decision-making level can
reasonably choose between the operation economic cost and the
operation safety risk according to the actual situation.
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Glossary

NT Total number of time periods.

NN Total number of nodes.

Nmg Total number of microgrids (MGs) inside the distribution
network (DN).

Ωl Set of all the branches.

Ωo Set of all the branches with on-load tap changer (OLTC).

Sn Node set of MG n.

Ne Total number of energy storage system (ESS) inside the MG.

Nω Total number of discrete scenarios.

ω Index of scenarios.

ψ Feasible region of pω.

γbt /γ
s
t Trading prices with HV grid.

gt Net load of DN system.

Closs/COLTC Cost coefficients associated with power losses and OLTC,
respectively.

rij Resistance of branch ij.

It,ij Current of branch ij at period t.

Δt Discrete time interval
~Uref Reference voltage point.

PPV
t,i /Q

PV
t,i Active/reactive power injected by PV array at node i at

period t.

θPVk Power factor angle of PV k.

SPVi Capacity of PV i.

PWind
t,i /QWind

t,i Active/reactive power injected by wind turbine at node at
period t.

PL,unc
t,i General load at node i at period t

�I Upper current limit.

�U/U Upper/lower limits of statutory voltage range.

SSOPi Capacity of VSC at node i.

QSOP
i / �QSOP

i Reactive power boundaries of VSC at node i.

λt min/λt max Upper and lower bounds of the internal transaction price
at period t.

Cdeg Coefficients concerning ESS degradation.

ηess,c/ηess,d Power exchange efficiencies of the ESS.

Se min/Se max SoC boundaries of ESS e.

μ/λ Dual variables of inequality/equality constraints in optimization
model of MGs.

pω Probability of scenario ω.

δ1/δ∞ Tolerant limit of norm-1/norm-inf of the ambiguity set in the
distributed robust optimization (DRO) model.

p vector of element pω.

m Number of iterations.

M Infinite positive integer

Psop,loss
t,i Active power losses caused by SOP at period t.

λt Clearing price of the energy trading market at period t.

Pnet
t,n Net load of MG n at period t.

Pt,i/Qt,i Sum of active/reactive power injection at node i at period t.

Pt,ij/Qt,ij Active/reactive power flow of branch ij at period t.

Ut,i Voltage magnitude of node i at period t.

PL
t,i/Q

L
t,i Active/reactive load consumptions of node i at period t.

cesst,i /d
ess
t,i Charging/discharging power of ESS i at period t.

PSOP
t,i /QSOP

t,i Active/reactive power injection by VSC at node i at
period t.

PL,up
t,i /PL,down

t,i Increased/decreased load demands due to the demand
response (DR) program.

Pess,c
t,i /Pess,d

t,i Charging/discharging power of ESS.

p+ω/p−ω Positive/negative probability value offset of pω.

Kt,ij Number of the tap steps and turns ratio of the OLTC connected to
branch ij at period t.
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