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Abstract 
 

This article aims at estimating the scale parameter of the Weimal distribution using Bayesian method and 
comparing the estimators obtained to the estimator of the scale parameter obtained from the method of 
maximum likelihood. Under Bayesian approach, the estimators are obtained by using uniform prior and 
Jeffrey’s prior with the adoption of the precautionary, quadratic and square error loss functions. A 
derivation and discussion2ws under maximum likelihood estimation is also done. The above methods of 
estimation employed in this paper are compared based on their mean square errors (MSEs) through a 
simulation study carried out in R statistical software with different sample sizes. The results indicate that 
the most appropriate method for the scale parameter is precautionary loss function under either uniform 
or Jeffrey’s prior irrespective of the sample sizes allocated and the values taken by the other parameters.  
 

 
Keywords: Weimal distribution; Bayesian methods; prior distributions; loss functions; maximum likelihood 

estimation; mean square error; sample size. 
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1 Introduction 
 
Ieren and Yahaya [1] developed a new distribution named Weimal distribution as an extension of the 
Normal distribution with two additional parameters for the scale and shape of the new distribution. The 
maximum likelihood estimates of parameters were obtained by the method of maximum likelihood in [2]. 
The fitness of Weimal distribution was tested by using two lifetime datasets and it was discovered that the 
new distribution provides a better fit for the skewed datasets when compared to other existing 
generalizations of the normal distribution including Kumaraswamy-Normal and Beta-Normal as well as the 
normal distribution. 
 
In statistics, we have two basic methods of parameter estimation and these are the classical and the non-
classical methods. In the classical theory of estimation, the parameters are taken to be fixed but unknown 
whereas we consider the parameters to be unknown and random just like variables. The most popular and 
unique method under classical theory is the method of maximum likelihood estimation while the Bayesian 
estimation method is considered under non-classical theory. But, in common real-life problems described by 
life time distributions, the parameters cannot be treated as fixed in all the life testing period according to [3] 
as well as [4] and [5]. Based on this fact, it becomes obvious the frequentist or classical approach can no 
longer handle adequately problems of parameter estimation in life time models and therefore the need for 
non-classical or Bayesian estimation in life time models.  
  
In order to achieve the gap above, many researchers have used Bayesian estimation method for parameters 
of different probability distributions and a list of some of these studies is as follows: Bayesian estimation for 
the extreme value distribution using progressive censored data and asymmetric loss by [6], Bayesian 
estimators of the shape and scale parameters of modified Weibull distribution using Lindley’s approximation 
under the squared error loss function, LINEX loss function and generalized entropy loss function by [7], 
comparison of Bayesian estimates of the shape parameter of Generalized Exponential Distribution based on 
a class of non-informative prior under the assumption of quadratic loss function, squared log-error loss 
function and general entropy loss function  (GELF) and maximum likelihood estimates by [8], Bayesian 
Survival Estimator for Weibull distribution with censored data by [9] as well as [10], [11]. Similarly, [12] 
studied the shape parameter of generalized Rayleigh distribution under non-informative priors with a 
comparison to the method of maximum likelihood. Besides, a good number of loss functions have been 
shown to be performing during estimation under Bayesian method in so many studies including [13-19] etc. 
 
Since the approach of estimating a parameter differs from one parameter of a distribution to another, this 
study aims at estimating the scale parameter of the Weimal distribution using Bayesian approach and making 
a comparison between the Bayesian approach and the method of maximum likelihood estimation approach. 
The rest of this paper organized in sections as follows: section 1 presents the introduction, Section 2 gives 
the materials and methods used in the article beginning with the distribution and likelihood function in sub-
Section 2.1, estimation under uniform prior in 2.2, estimation under Jeffrey’s prior in 2.3 and estimation 
using method of maximum likelihood in subsection 2.4. In section 3 we present the results and discussions 
and finally the conclusion in Section 4. 
 

2 Materials and Methods 
 

2.1 PDF and Likelihood function 
 

The pdf of the Weimal distribution with unknown parameter vector  , , ,
T

     is given as: 
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where 
1 x 

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 

 are the pdf and cdf of the normal distribution with location 

parameter      and dispersion parameter σ>0 is respectively and X   represent any 

continuous random variable, 0  is the scale parameter and 0   is the shape parameter of the Weimal 

distribution. 
 
The total log-likelihood function for θ is obtained from f(x) as follows: 
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The likelihood function for the scale parameter, , is given by; 
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Hence, for simplicity and ease of derivation and computation, we let 
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such that the above likelihood function becomes 
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2.2 Bayesian analysis under the assumption of uniform prior using three loss 
functions 

 
One crucial aspect when dealing with Bayesian approach is the selection of a prior distribution for the 
parameter of interest. Most at times priors are chosen according to one’s subjective knowledge and beliefs. 
Another important aspect of it is the choice of a loss function. 
 

To derive the posterior distribution of a parameter given some sample observations, we apply Bayes’ 
Theorem which is stated as follows: 
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where  p   and  |L X   are the prior distribution and the Likelihood function respectively. 

 
The uniform prior is defined as: 
 

  1, 0p      . 

 
The posterior distribution of the scale parameter   under uniform prior is obtained from equation (2.2.1) 
using integration by substitution method as 
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The Bayes estimators and posterior risks under uniform prior using SELF, QLF and PLF are given 
respectively as follows: 
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2.3 Bayesian analysis under the assumption of Jeffrey’s prior using three loss 
functions 

 
Also, the Jeffrey’s prior is defined as: 
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The posterior distribution of the scale parameter   for a given data under Jeffrey prior is obtained from 
equation (2.2.1) using integration by substitution method as 
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The Bayes estimators and posterior risks under uniform prior using SELF, QLF and PLF are given 
respectively as follows: 
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2.4 Maximum Likelihood estimation 
 
This part of the article estimates the scale parameter of the Weimal distribution using the method of 

maximum likelihood estimation. Let 1 2, , , nX X X be a random sample from the Weimal distribution 

with unknown parameter vector  , , ,
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     . The overall log-likelihood function for θ is obtained 

from f(x) as follows: 
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The likelihood function for the scale parameter, , is given by; 
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Let the log-likelihood function,  log |l L X 
, 

therefore 

 

logl n    .                                                                                                                     (2.4.3) 

 

Differentiating � partially with respect to , the scale parameter and solving for ̂  gives; 
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
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3 Results and Discussion 
 

3.1 Simulation and Comparison 
 
In this section, a package in R software named “newdistr” developed by Core Team [20] has been used to 
generate random samples of sizes n = (5, 10, 15, 20, 25,30, 35, 55, 75, 100, 150) from Weimal distribution 
by using different values for the distribution parameters as stated in the headings of the tables below. These 
tables present the results of our simulation study by providing the Mean Square Errors (MSEs) for the 
estimators of the scale parameter of the Weimal distribution under the some of the concern estimation 
methods or loss functions such as Maximum Likelihood Estimation (MLE), Squared Error Loss Function 
(SELF), Quadratic Loss Function (QLF), and Precautionary Loss Function (PLF) under both Uniform and 
Jeffrey prior. 
 
Table 3.1. Mean Square Errors (MSEs) for estimate of the scale parameter based on different sample 

sizes for 0.5  , 3.5  , 1.0   and 1.0  . 
 

Sample sizes MLE Uniform Prior Jeffrey’s Prior 
SELF QLF PLF SELF QLF PLF 

5 0.4504 0.6854  0.2803 0.8216 0.4504 0.1752  0.5544  
10 0.1297  0.1501 0.1152  0.1622  0.1297  0.1066  0.1389  
15 0.0899 0.0924 0.0890 0.0943 0.0899 0.0897 0.0909 
20 0.0819  0.0811 0.0835  0.0809 0.0819  0.0859 0.0814  
25 0.0814 0.0796 0.0836 0.0789 0.0814 0.0862 0.0805 
30 0.0817  0.0796  0.0840  0.0786  0.0817  0.0866 0.0806  
35 0.0835 0.0814 0.0857 0.0805 0.0835 0.0880 0.0824 
55 0.0913 0.0897 0.0930 0.0889 0.0913 0.0948 0.0905 
75 0.0978 0.0965 0.0991 0.0959 0.0978 0.1004 0.0972 
100 0.1037 0.1027 0.1047 0.1022 0.1037 0.1057 0.1032 
150 0.1116 0.1109 0.1122 0.1106 0.1116 0.1129 0.1112 

 
From Table 3.1, it is observed that MSEs of the estimates increases as we increase the sample sizes and we 
also found that for all the samples the PLF has a minimum bias under both priors irrespective of the 
variation in the samples indicating that the PLF under both priors is the best method for the scale parameter 
of the Weimal distribution. 

 
In the Table 3.2, it is also clear that MSEs for all the estimators get larger as sample size is increased. The 
PLF has also the minimum MSEs independent of the sample size and prior distribution which still indicates 
that it is a perfect estimator for the scale parameter of the Weimal distribution irrespective of the value of the 
shape, location and dispersion parameter. 
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Table 3.2. Mean Square Errors (MSEs) for estimate of the scale parameter based on different sample 

sizes for 1.0  , 0.5  , 1.5   and 2.5   
 

Sample 
sizes 

MLE Uniform Prior Jeffrey’s Prior 
SELF QLF PLF SELF QLF PLF 

5 0.5882  0.7009  0.5406  0.7782 0.5882  0.5579  0.6339 
10 0.4647  0.4436  0.4917  0.4354  0.4647  0.5246  0.4537 
15 0.4938 0.4732 0.5159 0.4637 0.4938 0.5398 0.4835 
20 0.5206  0.5041  0.5377  0.4963 0.5206 0.5556  0.5124 
25 0.5441 0.5308 0.5577 0.5243 0.5441 0.5718 0.5374 
30 0.5616  0.5505  0.5730 0.5451 0.5616  0.5845  0.5561 
35 0.5746 0.5651 0.5842 0.5605 0.5746 0.5939 0.5699 
55 0.6155 0.6098 0.6213 0.6069 0.6155 0.6271 0.6126 
75 0.6401 0.6360 0.6442 0.6340 0.6401 0.6483 0.6380 
100 0.6596 0.6567 0.6625 0.6552 0.6596 0.6655 0.6581 
150 0.6841 0.6823 0.6860 0.6813 0.6841 0.6878 0.6832 

 

Table 3.3. Mean Square Errors (MSEs) for estimate of the scale parameter based on different sample 

sizes for 1.5  , 0.5  , 2.5   and 1.5   
 

Sample sizes MLE Uniform Prior Jeffrey’s Prior 
SELF QLF PLF SELF QLF PLF 

5 1.2261 1.2163  1.3009 1.2347  1.2261 1.4407 1.2133  
10 1.2998 1.2372 1.3683 1.2087 1.2998 1.4427 1.2685 
15 1.3976 1.3540 1.4429 1.3332 1.3976 1.4898 1.3760 
20 1.4592  1.4272 1.4919  1.4116  1.4592  1.5254 1.4433  
25 1.5067 1.4819 1.5319 1.470 1.5067 1.5574 1.4944 
30 1.5415  1.5214  1.5619 1.5115  1.5415  1.5824  1.5315  
35 1.5656 1.5488 1.5826 1.5405 1.5656 1.5998 1.5573 
55 1.6397 1.6298 1.6496 1.6250 1.6397 1.6595 1.6348 
75 1.6824 1.6756 1.6892 1.6722 1.6824 1.6961 1.6790 
100 1.7155 1.7107 1.7204 1.7082 1.7155 1.7253 1.7131 
150 1.7566 1.7536 1.7597 1.7521 1.7566 1.7627 1.7551 

 

From Table 3.3, it is obvious that PLF (under uniform and Jeffrey priors) method yielded the best estimate 
for the scale parameter despite the changes in the sample sizes. Besides, the MSEs still increase as sample 
sizes becomes larger and there is no change even with the different parameter values. 
 

Table 3.4. Mean Square Errors (MSEs) for estimate of the scale parameter based on different sample 

sizes for 2.0  , 0.5  , 0.5   and 0.5   
 

Sample 
sizes 

MLE Uniform Prior Jeffrey’s Prior 
SELF QLF PLF SELF QLF PLF 

5 2.3640 2.2318 2.5612 2.1913  2.3640 2.8234 2.2928 
10 2.6348 2.5307 2.7448 2.4819  2.6348 2.8607 2.5832  
15 2.8015 2.7348 2.8698 2.7026 2.8015 2.9398 2.7685 
20 2.8978  2.8503 2.9461  2.8270  2.8978  2.9952 2.8743 
25 2.9693 2.9330 3.0060 2.9152 2.9693 3.0430 2.9513 
30 3.0214  2.9923  3.0508 2.9780 3.0214  3.0803  3.0070 
35 3.0567 3.0325 3.0811 3.0205 3.0567 3.1057 3.0447 
55 3.1639 3.1499 3.1779 3.1430 3.1639 3.1919 3.1569 
75 3.2246 3.2150 3.2342 3.2103 3.2246 3.2439 3.2199 
100 3.2714 3.2646 3.2783 3.2612 3.2714 3.2851 3.2680 
150 3.3292 3.3250 3.3334 3.3229 3.3292 3.3376 3.3271 
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More so the result from Table 3.4 corresponds with the previous results showing that uniform and Jeffrey’s  
priors with PLF have the smallest MSEs which by comparison produces the best estimates for the scale 
parameter, and looking at all the results presented in the tables, we can conclude that Bayes estimates under 
precautionary loss function (PLF) using uniform prior and Jeffrey’s prior are associated with minimum 
MSEs when compared to those obtained using MLE, SELF, and QLF under both uniform and Jeffrey’s priors 
irrespective of the assumed parametric values and allocated sample sizes of n=5, 10, 15, 20, 25, 30, 55, 75, 
100 and 150. 
 

4 Summary and Conclusion 
 
In summary, we obtained Bayesian estimators of the scale parameter of the Weimal distribution under 
Posterior distributions assuming Uniform and Jeffrey’s priors. Bayes estimators and their posterior risks 
have been derived and presented using three loss functions, namely: Squared Error Loss Function (SELF), 
Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). The performance of these 
estimators is assessed based on the Mean Square Errors (MSEs) of the estimates. A simulation study is 
carried out in R statistical software to compare the performance of the estimators from the two methods 
considered in this paper and it is discovered that the PLF (under uniform and Jeffrey priors) produces 
estimates with minimum MSEs consistently irrespective of the parameter values and differences in sample 
size. Therefore, we conclude that Bayesian Method under both uniform and Jeffrey’s priors using 
precautionary loss function (PLF) is better compared to Maximum Likelihood Estimation and should be 
considered when estimating the scale parameter of the Weimal distribution irrespective of the differences in 
sample sizes and the parameter values. 
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