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ABSTRACT 
 

Aims:  This paper aims to develop prediction models for forecasting rainfall occurrence over the 
Bagmati river basin of Nepal based upon climate related predictor variables. 
Study Design:  Time series design with statistical downscaling of large scale daily climate data and 
observed rainfall data. 
Place and Duration of Study:  Study was conducted at Central Department of Statistics, 
Tribhuvan University, Kirtipur, Nepal, between 2013 and 2015. 
Methodology: A day is considered as a wet day if area weighted daily rainfall (AWDR) is more 
than 1 mm. Extreme rainfall is determined by the 98thpercentile of AWDR. Binary logistic 
regression models are built with 13 possible principal components (PCs) of 7 climate related 
predictor variables using daily data for 1981-2000 period. Thereafter, built models are validated for 
2001-2008 period. 
Results: Nine separate seasonal logistic models are fitted with Hosmer-Lemeshow tests having at 
least 0.207 p-values. The first PC of Air surface temperature has the greatest influence with odds 
ratio (OR) of 4.757 in predicting a wet day during post-monsoon across four models. It is followed 
by the first PC of Relative humidity with OR (4.112) in winter, first PC of Relative humidity with OR 
(3.443) in pre-monsoon and second PC of Relative humidity with OR (3.601) in monsoon. 
Similarly, second PC of Relative humidity has the highest contribution with OR (7.395) in predicting 
extreme rainfall in post-monsoon across all five models. It is followed by the first PC of Air surface 
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temperature with OR (7.194) in monsoon, first PC of Relative humidity in winter with OR (6.820) 
and pre-monsoon with OR (5.076), and second PC of Relative humidity with OR (3.186) for the 
non-seasonal model.  
Conclusion:  The developed logistic regression models are applicable in forecasting rainfall 
occurrence seasonally in the Bagmati river basin of Nepal. 
 

 
Keywords:  Bagmati basin; climate predictors; climate models; logistic regression; rainfall; statistical 

downscaling. 
 
1. INTRODUCTION 
 
Rainfall is a natural process and very important 
hydrological phenomenon that affects human life 
and environment in both positive and negative 
perspectives. Globally, it is found that climate 
change has significant effect on rainfall and its 
cycle with increased climatic variability [1]. The 
circulation and distribution of availability of water 
under climate projection has become more 
complex and difficult [2,3]. Climate change has 
affected not only the overall magnitude of rainfall 
but also its seasonal distribution and inter-annual 
variability worldwide [4]. The Intergovernmental 
Panel on Climate Change (IPCC) stated that 
climate hazards, including changes in 
precipitation cycles, reduced crop yields due to 
extreme weather event and changing local 
temperature, are likely to decrease the food 
security of vulnerable population [5]. It is stated 
that climate change is not expected to be 
homogeneous globally. Substantial differences in 
precipitation trends at the regional level will occur 
[6]. In context of Nepal, it is found that there is a 
huge fluctuation in runoff from season to season 
[7]. For instance, a difference in runoff between 
400m3/s to 4300 m3/s from February to August 
were estimated in Sapta-Koshi [7] which induced 
the risk of flooding. Further, landslide and 
sedimentation are likely to occur due to intense 
precipitation in monsoon and water shortage in 
dry season [8]. In Nepal, seasonal prediction of 
rainfall is required by many sectors such as 
agricultural sector and for hydropower generation 
[9]. Nepal Electricity Corporation has reported 
that, from past some years, Nepal has been 
experiencing prolong load-shedding problems as 
a consequence of insufficient water availability 
despite the fact that the power shortage is mainly 
due to a less number of hydropower projects. 
Naturally, the load-shedding schedule is        
affected seasonally due to seasonal variation in 
rainfall. 
 
In order to understand the seasonal rainfall 
patterns given climate change scenario, many 
studies have shown that General Circulation 

Models (GCMs) are currently the most credible 
tools and also provide estimates of climate 
variables (e.g. air temperature, relative humidity 
etc.) on a global scale. However, direct use of 
GCM outputs is not suitable to assess the 
climate change impact at regional level due to 
their coarse resolution in finer scale [10]. 
Therefore, one of common methods applicable to 
solve this problem is the empirical statistical-
downscaling technique. This technique is widely 
employed to downscale climate information from 
the global scale [11]. Yarnal [12] mentioned that 
the goal of the downscaling is to describe the 
relationship between atmospheric circulations 
and the surface environment, with attention being 
focused more on model parsimony and accuracy, 
rather than understanding the relationship 
between them. Under the fundamental 
assumptions of the statistical downscaling 
techniques, the relationships observed between 
predictor(s) and the response is time-invariant 
[12].  Consequently, this paper has attempted to 
use the statistical-downscaling technique to 
explain the rainfall occurrence for separate 
seasons. This technique assumes that the 
relationship between large scale variables and 
local variables should explain a large part of the 
observed variability at basin and the expected 
changes in the mean climate condition should lie 
within the natural variability [13]. 
 

Several studies were found applying different 
downscaling techniques for the study of climate 
system. For example, Wigena [14] has applied 
statistical downscaling model to predict the 
rainfall in Indramayu. The analysis was done to 
determine the best domain output by using 
projection pursuit regression. Furthermore, 
Cavazos and Hewitson [15] showed the 
performance of NCEP/NCAR output to find the 
potential combination of response variables by 
using artificial neural network. Sahar et al. [16] 
performed genetic programming for the 
downscaling of extreme rainfall events on the 
east coast of Peninsular Malaysia. They found 
that models derived using this technique can 
predict both annual and seasonal extreme rainfall 
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indices more accurately compared to artificial 
neural network and statistical downscaling model 
(SDSM) [17].  
 

Some climate change impact studies have also 
been conducted in Nepalese region [18,19]. 
Mishra et al. [10] used quantile-based bias 
correction method for climate projection 
downscaling and impact assessment on 
precipitation over upper Bagmati River basin in 
Nepal. Babel et al. [20] used a statistical-
downscaling technique to study about climate 
change and water resources in the upper 
Bagmati River basin, Nepal. Likewise, Shrestha 
et al. [21] studied about impact of climate change 
on River flow and hydropower production in 
Kulekhani hydropower project of Nepal using 
SDSM. Shrestha et al. [22] studied the rainfall 
occurrence using logistic model as a statistical 
downscaling technique for the Bagmati River 
basin in Nepal but without accounting seasonal 
variability. This paper attempts to address the 
seasonal effects of the climate predictor 
variables on the rainfall occurrence over the 
Bagmati River basin [22] in Nepal. 
 

Till the present research work, no literature was 
found that assessed the occurrence of wet (or 
dry) day and occurrence of extreme (or higher) 
rainfall day accounting seasonal effects using the 
probabilistic projection method (or a binary 
logistic regression) as a statistical downscaling 
technique in Nepal.  Thus, in order to fill this 
research gap, the present study is conducted for 
the investigation of the rainfall occurrence pattern 
given the effect of some possible climate 
predictor variables, which are found well 
simulated by GCMs [10]. Further, extensive 
reviews of the published papers concerning the 
downscaling techniques and use of them in 
projection of the rainfall at their own target 
locations have motivated us to study about the 
rainfall occurrence under seasonal effects by 
developing predictive models with the following 
research questions. (i) Are the selected climate 
predictor variables well fitted to the target model 
to project rainfall occurrence with seasonal 
separation? (ii) What is the extent of effects of 
the predictors on rainfall occurrence separated 
under seasonal changes? With these research 
questions, the present study thus has the first 
objective set to develop the predictive models of 
the rainfall occurrence (a dependent variable) as 
statistical downscaling techniques using binary 
logistic regression on the basis of the reanalysis 
data for climate predictor variables available from 
NCEP/NCAR project considering seasonality. 

Further, it also has the second objective set to 
assess the effect of the different predictors on 
the rainfall occurrence through those models. 
Therefore, it is hypothesized that the selected 
predictors have significant effects on the rainfall 
occurrence at a given confidence level. 
 
Review of  the papers  pertaining  to  the  rainfall  
pattern  with  use  of  logistic regression model  
as  statistical  downscaling  technique, a binary 
logistic model, a member of generalized linear 
models (GLM) [23], has been frequently applied 
to model climatological data.  Some examples 
are evident from papers published by Chandler 
and Wheater [23], Chandler [24]; Yan et al. [25]; 
Fealy et al. [11]; Prasad et al. [26]; Filho et al. 
[27]; Shrestha et al. [22]. 
 
In the research papers, it  is  found  that Nadja  
(2005)  used  GLM  with  logit  link  (logistic  
model)  to simulate  daily  rainfall  at  Heathrow,  
Birmingham  and Manchester airports, United 
Kingdom. The results were that all of the models 
projected a decrease in mean daily rainfall in 
summer and an increase in winter at Heathrow 
[28].  In addition, Prasad et al. [26] used a logistic 
regression approach for monthly rainfall 
forecasts in meteorological subdivision of India 
based on DEMTER retrospective forecasts. The 
model showed good performance in capturing 
extreme rainfall years and appeared to perform 
better than the direct model forecasts of total 
precipitation in such years. A  study  used  
quantile  regression  as  statistical downscaling  
technique  to  estimate  extreme  monthly  rainfall 
at station Bangkir Indonesia. The results showed 
that at 95th percentile,  the  pattern  of  forecasted  
rainfall  in  January  to December  2008  was  
similar  to  actual  rainfall  with correlation  0.98  
and  the  forecasted  rainfall  (843  mm)  in 
February 2008 was considered as the extreme 
rainfall month which confirms well to the           
highest actual rainfall (727 mm) with probability 
0.99 [29]. 
 

Therefore, this study attempts to address some 
key issues related to downscaling non-normally 
distributed climate variables like rainfall [11] in a 
topographically adverse location like the Bagmati 
River basin in Nepal. It is also expected that the 
models so built would be applicable to study 
about seasonally separated rainfall phenomena 
in future in the Bagmati River basin under the 
impact of climate change when the GCM              
outputs with future emission scenarios are 
available. 
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2. MATERIALS AND METHODOLOGY 
 
2.1 Study Area 
 
The Bagmati River basin (BRB) is located within 
the middle mountain of Nepal. The Fig. 1 is a 
map of the BRB located within Nepal. It extends 
from 26° 45’N-27° 49’ N and 85° 02’ E-85°27’ E 
and has a catchment area of 3, 750 square 
kilometers in Nepal. However, the area 
considered for the study is 3604.44 square 
kilometer based upon location of 25 stations and 
derived using of Thiessen polygon method in GIS 
software [22]. The Bagmati River originates from 
the Shivapuri hills of the Mahabharata range in 
the Kathmandu Valley and drains out of Nepal 
across the Indian state-Bihar.  
 

 
 

Fig. 1. Map of Nepal and the Bagmati River 
Basin with its tributaries and 25 stations  

 

It reaches the River Ganges after passing 
through the inner Mahabharata range and the 
plain of Terai. It is mentioned that the elevation of 
the Bagmati River basin ranges from about less 
than 80 m in Terai, its southern part to 2900 m in 
the Mahabharata range, its northern part [30]. Its 
length is about 51 km in Nepal. Its main 
tributaries are Manohara, Bishnumati, Kulekhani, 
Kokhajor, Marin, Chandi, Jhanjh and 
Manusmara. The Kathmandu valley comprises 
15% of the basin area in Nepal. Main source of 
water in the Bagmati River basin is rain and 
natural springs [30]. There are tributaries and 
sub-tributaries of the Bagmati River shown in the 

map along with precipitation, climatological and 
agro-meteorological stations indicated by black 
triangles. 
 

2.2 Climate of the Study Area 
 
Nepal is ecologically divided into three belts 
namely Himalayan, Mountain and Terai belts and 
surrounded by India (West, East and South) and 
China (North). The nearest ocean is the Indian 
Ocean and near to the Bay of Bengal at the 
south-east side. The climatic condition of the 
Bagmati River basin is therefore, quite changing 
due to the intrinsic local topography and 
influenced by global climatic activities due to the 
atmosphere and Ocean. Rainfall and 
temperature patterns differ according to seasons 
in this area. Basically there are four seasons in 
Nepal, namely, winter (December to February), 
pre-monsoon (March to May), monsoon or 
summer (June to September) and post-monsoon 
(October to November). Temperature generally 
decreases with elevation and becomes low in 
winter and high in summer. More specifically, the 
climate changes naturally from cold temperature 
in higher mountains via warm temperature at 
mid-elevation levels to subtropical region in the 
southern low land (Terai). Thus, the whole 
Bagmati River basin is actually divided into three 
climatic zones.  
 

Cool temperature zone lies between 2000-3000 
m which covers only about 5 percent of the basin 
with mean annual temperature varying between 
10°C to 15°C. The warm temperature zone lies 
between 1000-2000 m which covers about 60 
percent part of the basin with mean annual 
temperature varying between 15°C to 20°C. 
Lastly, the sub-tropical zone lies below 1000 m 
which covers southern part of the basin with the 
Siwaliks and Terai with mean annual 
temperature ranging between 20°C to 30°C. The 
mean relative humidity of the basin varies 
between 70% and 86%. Annual rainfall is about 
1800 mm with 80 percent of the total rain 
occurring in the monsoon season [30]. Rainfall 
occurrence in the basin is mainly due to the 
south east monsoon, generally starting from 
June and ending at September. In this course, 
the humid monsoon air stream blows from the 
Bay of Bengal and rises till it meets the 
Himalaya. Then ultimately, rainfall occurs heavily 
on some section of the southern Himalayan 
slopes. It also occurs heavily along the Chure 
range. As mentioned in a report of Department of 
Hydrology and Meteorology in Nepal, the area 
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close to the Indian boarder receives about 1500 
mm rain annually. It rises up to 2000 mm at the 
foot hills of the Chure but it diminishes at the 
northern part of the Chure. It is also noted that 
rainfall reduces due to the rain shadow effect. 
Furthermore, the rainfall pattern also changes 
due to orographic effect in this region [10]. From 
the statements, it is clear that the study area, 
although small in size compared to Nepal has 
spatially varied climatic situation.  
 

2.3 Data 
 

The present study considered only 25 stations 
installed at different parts of the basin due to 
unavailability of complete time-series of daily 
rainfall data. The data, available from the 
Department of Hydrology and Meteorology, 
Kathmandu, Nepal covers 28 years of daily data 
between January 1981 and December 2008. The 
daily rainfall of all stations is aggregated into 
single time-series using area weighted mean. 
Specifically, the Thiessen polygon method in Arc 
GIS 9.3 [22] is used for the purpose. Then, the 
resulted time series of the rainfall is named as 
area weighted daily rainfall (AWDR) and hence 
rainfall pattern of the BRB.  
 

2.3.1 Outcome variable  
 
For statistical modeling, there are two outcome 
variables representing status related to rainfall. 
The first outcome variable represents a day 
either as wet day with code 1 when AWDR is 
more than 1 mm or as dry day with code 0 
otherwise.  
 

The second outcome variable represents a day 
either as extreme/higher rainfall day with code 1 
when AWDR is equal to or more than it’s the 98th 
percentile, or no extreme/lower rainfall day with 
code 0 otherwise. The past papers have 
demonstrated various percentile levels (for 
example, 90 or 95 or 98) to represent the 
extreme/higher rainfall event. In this study, the 
98th percentile model showed the better model 
meeting all possible criteria that are necessary.  
Both the outcome variables may be treated as 
rainfall occurrence or not. 
 

2.3.2 Predictors  
 

A number of predictors required for modeling are 
unavailable from meteorological stations. The 
study is not only limited to build a functional 

relationship between a dependent variable and a 
set of independent variables but also to forecast 
the scenario of the dependent variable in future. 
Hence, it is necessary to have information on 
past, present and future time-series data of the 
predictors. To overcome this difficulty, data are 
obtained from the National Center for 
Environmental Prediction/National Center for 
Atmospheric Research (NCEP/NCAR) reanalysis 
project (website: http [31]. In this study, 
NCEP/NCAR reanalysis data resemble the 
observed data, usually used in hydro-
climatology. Furthermore, in absence of 
observed data, it is not possible to check the 
validity of this data [32]. 
 

Studies in the past have found that rainfall 
phenomenon is very complex system on the 
earth. This paper considers only seven climate 
predictors despite there may be more than these 
to explain the rainfall event in a region. 
Geopotential height (GPH) (m) at 850 hpa, 
Relative humidity (RH)(%) at 850 hpa , Air 
surface temperature (AST) in Kelvin , Sea level 
pressure (pa), U- component of wind (Zonal 
wind)(UW) (m/s) at 850 hpa , V - component of 
wind (Meridional wind) (VW) (m/s) at 850 hpa  
and Precipitation flux (PF) (kg m-2 s-1) are 
selected for spatial resolution of 25° N - 30° N in 
latitude and 82.5° E – 87.5° E in longitude for the  
period 1981-2008.These grids encapsulate the 
Nepal and hence the BRB.  
 

For each predictor each with 9 grids, principal 
component analysis (PCA) is applied in order to 
reduce dimensionality and eliminate 
multicollinearity effect in the model [22]. The 
reduction in dimensionality and the principal 
component analysis coefficients are obtained in 
the study carried out by Shrestha et al. [22]. 
However, PCs of Precipitation flux were not 
included in the study.  The following Table 1 
shows the remaining PCs for Precipitation flux 
only. 
 

2.4 Methods 
 

2.4.1 Rainfall occurrence model  
 

A binary logistic regression model, as Statistical 
downscaling method, is used to establish a 
functional relationship between a outcome 
variable and a set of 13 predictor variables 
(Table 3 in [22]) using the1981-2000 as 
calibration period. The fitted model is validated 
by the period 2001-2008 [33]. Moreover, there 
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are four separate models for winter, pre-
monsoon, monsoon and post-monsoon seasons 
for the first outcome variable. Additionally, there 
are five models for four season and year for the 
second outcome variable. Here, symbolically an 
outcome variable, say, Yi (defined in section 
2.3.1) assumes two possible values 1 and 0 with 
probability of rainfall occurrence or success (pi), 
and 1- pi, probability of no rainfall occurrence or 
failure respectively. Then, an odd of success is 

expressed as
1

i

i

p

p

 
 − 

 the ratio of the probability 

of success to the probability of failure. The 
logistic regression model [34] is expressed:  
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(2) 

 
β0, β1 = coefficients of the model estimated from 
the data 
 

xi= ith predictor variable, I = 1, 2, …, k. 
 

The maximum likelihood estimation (MLE) 
method is employed to estimate parameters 
within the model. The predicted values can be 
interpreted as probability pi with range (0, 1) 
evaluated by the equation 2.  
 

2.4.2 Model fit and diagnostics  
 

There can be 8191 (or 213 -1) possible binary 
logistic models with or without significant 13 
predictors. Selecting the best one manually is 
very difficult task. The forward and backward 
likelihood ratio or purposeful selection method 
are considered for the selection of significant 
predictors. A goodness of fit is assessed by 
Hosmer-Lemeshow (HL) test and Deviance 
Statistic.  
 

Standardized Deviance residuals are examined 
to detect the outlier(s) against linear predictor. 
The residuals falling outside range ±3 are 
regarded as outliers. Index of concordance (‘c’) 
as area under curve (AUC) is applied to                  
assess the capability of accurate classification                 
of a model. The bigger value between                       
0 and 1 suggests a better overall performance of 
the model as capability of best prediction.  
 

3. RESULTS AND DISCUSSION 
 
Four separate seasonal models are calibrated 
with the data for the period 1981-2000. The 
models are used to compare the effects of each 
of 13 predictors included in the separate models 
irrespective of whether they are statistically 
significant or not at 5% level. Table 2 shows the 
results of all models with goodness of fit test. 
Table 2 depicts that all four models are not 
equally fitted on the basis of HL test. Models 1 
and 2 are well fitted as they show higher 
insignificant P-values but Models 3 and 4                      
are not well-fitted to the data. However,      
Deviance statistics show that all the fitted             
models have significant results which are 
contradictory to the HL test. However, Table                     
2 is constructed basically to compare                           
the influence of each of all the 13                    
predictors present in the model on the outcome 
variable. 
 
Geopotential height1 has positive effect on the 
outcome variable except for Model 3 for 
monsoon season. But the coefficients are 
insignificant in all four models. It has relatively 
more impact in post-monsoon season 
irrespective of sign of the coefficient.  
 
Relative humidity has two components with 
positive coefficients significant for all the models. 
This indicates that it has a very important role in 
predicting a day as wet day in all seasons 
throughout a year. 
 
Sea level pressure1 shows a negative impact in 
all models except in Model 3 (monsoon season). 
Like Geopotential height1, it has greater impact 
in post-monsoon season with insignificant 
negative coefficient. But it has a negative but 
significant effect on the outcome variable in pre-
monsoon season (Model 2).  
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Table 1. Spatial grid loadings of predictor variabl es 
 

Predictor  
variables 

Lon82.5_Lat_25  
(G1) 

Lon85._Lat_25  
(G2) 

Lon87.5_Lat_25  
(G3) 

Lon82.5_  
Lat_27.5 
(G4) 

Lon85_  
Lat_27.5 
(G5) 

Lon87.5_  
Lat_27.5 
(G6) 

Lon82.5  
_Lat_30 
(G7) 

Lon85_  
Lat_30 
(G8) 

Lon87.5_Lat_30  
(G9) 

PF1 0.184 0.306 0.414 0.451 0.737 0.715 0.698 0.9 0.857 
PF2 0.865 0.91 0.729 0.736 0.52 0.428 0.313 0.242 0.214 

PF1 = 0.184(PF1_G1) + .306 (PF1_G2) + .414 (PF1_G3) + .451(PF1_G4) + .737(PF1_G5) + .715(PF1_G6) + .698(PF1_G7) + .900(PF1_G8) + .857(PF1_G9) and so on 
 

Table 2. Coefficients and Wald Test in seasonally s eparated binary logistic models for a rainfall occu rrence: a wet day/dry day  
 

 Predictor variables   Parameter Estimates (B Coefficients)  
 Model 1  

(Winter) 
Model 2  
(Pre-monsoon) 

Model 3  
(Monsoon) 

Model 4  
(Post-monsoon) 

Geopotential height1 1.789 2.372 -2.001 4.084 
Relative humidity1 1.525* 1.425* .996* 1.302* 
Relative humidity 2 1.010* 1.181* 1.122* 1.697* 
Sea level pressure1 -2.274 -3.978* 1.844 -5.254 
Precipitation flux 1 .834* -.214 .277* .049 
Precipitation flux 2 .090 .261 .297* .192 
Air surface temperature1 -1.556 -1.437* .729 -.997 
Air surface temperature2 -.811 .114 .604 -1.068 
U-wind1 .721* -.496* -.068 .067 
U-wind2 .377* -.167 -.223* .014 
V-wind1 .270* .009 -.077 -.007 
V-wind 2 .305 .596* -.025 .426* 
V-wind 3 -.170 .129 -.251* .073 
Constant -3.237* -1.093* -.871* -1.503* 
HL Test/df 
(p-value) 

5.677/8 
(.683) 

6.102/8 
(.636) 

16.912/8 
(.031) 

20.074/8 
(.010) 

Deviance (-2LL) 627.817 1757.067 1681..249 688.265 
Df 1796 1821 2426 1206 

The procedure models treated Dry day as the reference category (Test-statistic is Wald test with significant p-values: *P< 0.01 **P< 0.05 and ***P< 0.10) 
 



 
 
 
 

Shrestha and Shrestha; BJECC, 7(1): 26-42, 2017; Article no.BJECC.2017.003 
 
 

 
33 

 

Precipitation flux with two components has 
positive impact on the outcome variable except in 
model 2 along with negative insignificant impact 
of its first PC. Its two PCs seem changing in their 
significance with respect to different seasons. 
However, the first component has relatively a 
greater influence in the winter season. 
 
Air surface temperature with two PCs has 
insignificant negative impact in all models except 
in Model 2. But its second PC has insignificant 
positive impact in some models (Table 2). This 
may be due to its spatial variation or presence of 
multicollinearity in the models. However, its first 
PC has a greater influence in the winter season. 
It reflects that a day has more likely to be a dry 
day. Naturally, this is true and common result in 
the winter. 
 
Likewise, U-wind has two components and V-
wind has three components in all models. But 
most of them are insignificant with varying impact 
(positive or negative) on the outcome variable. 
This variability in the wind may be because of 
seasonality effect or spatial variation or 
multicollinearity effect.  
 
When the coefficients of all 13 predictors are 
compared across all models, they have a varying 
impact with different magnitudes with varying test 
results seen from one model to other. These 
varying outputs thus show the seasonal effect of 
the predictors on the outcome variable. However, 
these models seem to violate restrictive 
assumption of regression, for example, 
multicollinearity. 
 
Diagnosis of all models shows that there are 
multicollinearity effects detected by variance 
inflation factor (VIF) of some predictors, for 
example Geopotential height1 (VIF>139), Sea 
level pressure1 (VIF>247), Air surface 
temperature1 (VIF>14), and Air surface 
temperature2 (VIF>19).Results are not shown 
here because of limited space. In order to 
observe the significant effect of the predictors 
with less influence of multicollinearity, all the 
above four models are re-calibrated. The models 
so re-calibrated may exclude some predictors 
due to multicollinearity effect. This is true for both 
the rainfall occurrence models. 
 
Tables 3(a) and 3(b) demonstrate the results of a 
goodness-of-fit test for both the rainfall 
occurrence variables. There are nine separate 
best fitted final models with these two outcome 
variables. All models show highly insignificant HL 

statistic (P values ≥ .20) with minimum AIC or 
BIC.  
 
3.1 Adequacy and Validation of Model 
 
All the models have highly significant index of 
concordance (Tables 3(a)-(b)) with a value (‘c’) 
more than 80 percent for their training periods. 
These indices are also more than 80 percent for 
validation period too. This evidences that the 
models are adequately validated.  Examination of 
the assumption of the log-odds linearly related 
with the linear predictor is performed including 
the linear predictor and its square term with other 
predictors in each model. But the results showed 
insignificant result of the square of a linear 
predictor in each model. 
 
Checking of over-dispersion in each model 
reveals absence of over-dispersion of models 
since the results of Deviance divided by degrees 
of freedom (mean deviance) in Tables 3(a)-3(b) 
are all less than one.  
 
Scatter diagrams (Figs. 2(a), (b), (c), (d)) of 
standardized deviance residual against a value 
of linear predictors show that there may be few 
outliers in winter and post-monsoon but not in 
monsoon and pre-monsoon seasons. However, 
these outliers have no serous effect on the 
coefficients and their standard errors in the 
model when the models are re-run without them.  
 
Tables 3(a) and 3(b) revealed that all 9 separate 
binary logistic models are well fitted to the data 
since the H-L statistic tests (Chi-square values 
with degrees of freedom (df) of 8) ranged from 
3.327 to 11.258 with corresponding insignificant 
p-values from 0.912 to 0.188.  The fitting of the 
models are also supported by the Deviance 
tests with the Chi-square’s values ranging from 
970.125 (df =7297) to 1612.34 (df=1828) each 
with the significant p-value < 0.01. Along with 
the goodness of fit test, test of adequacy and 
validation presented in section 3.1 have 
supported that all the models are well fitted and 
validated. Hence, the first objective is achieved 
and that all the nine separated binary logistic 
models are well developed and applicable for 
projecting the rainfall occurrence over the study 
area. 
 
Tables 4(a) and 4(b) show different number of 
predictors included in the separate models 
developed. The Wald statistics in each model 
demonstrate that the coefficients of each of the 
predictors in each model are all highly significant 
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at 5 percent level of significance. The Wald 
statistics (chi-square values each with df =1) are 
found to range from 5.347 to 434.178 with p-
values less than 0.01.  These results thus depict 
that the coefficients of the predictors in all 
models are significantly different from zero. 
Hence, the hypothesis of statistically significant 
predictors in all the models is satisfied with each 
coefficient different from zero.   
 
While assessing the effect of each predictor in 
each model, interpretations are made in terms of 
odds ratio (OR).  Relative humidity and Air 
surface temperature have demonstrated more 
contribution to the wet day compared to other 
predictors. The first component, Relative 
humidity1 has more significant positive effect on 
the wet day with OR of 4.112 in winter. Its effect 
seems gradually decreasing in pre-monsoon 
(OR=3.443), monsoon (OR=3.241) and post-
monsoon (OR=2.092). More precisely, it has a 
greater impact on dry season than in wet season. 
However, the second component, Relative 
humidity2 has a greater effect (OR=3.601) on the 
wet day in monsoon.  Further, this component 
has also more impact in winter (OR=2.857) and 
pre-monsoon (OR=3.213). However, it has no 
influence in post-monsoon. The changing impact 
of the Relative humidity seems to be due to (a) 
seasonal change or (b) its spatial variation due to 
difference in functional forms of principal 
components or (c) the inclusion of other climate 
predictors or all of them in different models. 
Relative humidity2 has demonstrated a greater 
influence on the wet in the monsoon where Air 
surface temperature is absent. But post-
monsoon shows that Relative humidity1 has an 
effect on the wet day little less (OR=2.092) since 
there is the presence of Air surface temperature 
with its two components (OR=4.757 and 
OR=2.73). This fact evidences that Relative 
humidity has changing impact because of 
presence of second more influencing factor Air 
surface temperature along with others. Further, 
this also evidences that Air surface temperature 
is also giving significant effect differently from 
season to season. Its first component, Air 
surface temperature1 has less effect on the wet 
day in winter (OR=.343) and pre-monsoon (.559) 
but a greater effect on post-monsoon 
(OR=4.757). It also reveals that the spatial 
impact on wet day is due to presence of second 
component in post-monsoon (OR=2.73). Like 
Relative humidity, Precipitation flux has its one 
component giving a significant effect on the wet 
day in winter (OR=1.973) and post-monsoon 
(OR=1.595). Its spatial impact is not much 

evident like Relative humidity and Air surface 
temperature. Moreover, the less difference in OR 
for two seasons indicates that its impact on the 
wet day is almost homogeneous. It means that 
the Precipitation flux has a less seasonal impact 
on the wet day. Other factors like Geopotential 
height, U-wind and V-wind have their 
components too. U-wind with its two components 
(OR=.588 in pre-monsoon and OR=.759 in 
monsoon) has less impact on the wet day and 
shows relatively similar effect on both seasons. 
But V-wind has little different nature of its impact. 
Like Air surface temperature, V-wind shows 
positive impact (OR=1.707) with its second 
component, V-wind2 but negative impact 
(OR=.831) in monsoon. This behavior of V-wind 
indicates that there are both spatial and seasonal 
variations and impact due to the presence of 
other factors in the same model. Geopotential 
height demonstrates the negative impact on the 
wet day in monsoon (OR=.410) and post-
monsoon (OR=.509) with its single component. 
Sea level pressure with its single component has 
least effect in pre-monsoon (OR=.296) and in 
winter (OR=.422) across all the factors. The 
presence of Relative humidity seems to dominate 
Sea level pressure in winter and pre-monsoon.  
 
Likewise, coefficients of predictors included in 5 
different binary logistic models for extreme/higher 
rainfall are also examined and assessed.  It 
shows different odds ratios from one season to 
another. Like the models for wet day, Relative 
humidity also showed dominant character in 
predicting the extreme rainfall day in all models 
except for monsoon. Relative humidity2, the 
second component of the Relative humidity has 
the greatest effect (OR=7.395) followed by 
Relative humidity1, the first component 
(OR=4.435) in post-monsoon. The coefficients 
seem changing from season to season. Relative 
humidity1 has the second greatest effect on the 
extreme rainfall day (OR=6.82) in winter. But it 
has the least effect with Relative humidity2 
(OR=2.77) in pre-monsoon. Annual model 
demonstrates its character little differently with 
(Relative humidity1 (OR=2.781) and Relative 
humidity2 (OR=3.186). Post-monsoon shows its 
highest influence because there is absence of 
most influencing factor Air surface temperature 
along with other predictors in this season. Such 
behavior of Relative humidity indicates that it has 
significant seasonal variation and more 
explanatory power for predicting the extreme 
rainfall if other more influencing factors are 
absent. It is also supported by the fact that it is 
absent in monsoon. At the same time, Air surface 



temperature1, the first component has the 
greatest effect (OR=7.194) on the extreme 
rainfall day. Other seasons demonstrate that Air 
surface temperature has little less effect on it as 
it is seen in pre-monsoon (OR=2.74) in the 
presence of two components of Relative 
humidity. Its similar pattern can also be seen in 
annual model (OR=2.01 for Air surface 
temperature1). Thus, both Relative humidity and 
Air surface temperature have relatively more 
dominant effect on the extreme rainfall and show 
changing nature from season to season with the 
presence of spatial variation. Again l
models for wet day, Precipitation flux has two 
components present in all models except in post
monsoon. Its odds ratios are ranging from 1.215 
in monsoon to 2.479 in winter. So
relatively homogeneous positive effect for the 
extreme rainfall over the basin for all season
This could be due to the presence of the most 
dominant factor, Relative humidity o
 

 

Fig. 2a. For winter

 
Fig. 2c. For monsoon

Fig. 2. Scatter- plot of Standardized Deviance Residual against predi cted value of linear 
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temperature1, the first component has the 
greatest effect (OR=7.194) on the extreme 
rainfall day. Other seasons demonstrate that Air 
surface temperature has little less effect on it as 

monsoon (OR=2.74) in the 
presence of two components of Relative 
humidity. Its similar pattern can also be seen in 
annual model (OR=2.01 for Air surface 

both Relative humidity and 
Air surface temperature have relatively more 

minant effect on the extreme rainfall and show 
changing nature from season to season with the 
presence of spatial variation. Again like in the 

recipitation flux has two 
components present in all models except in post-

ratios are ranging from 1.215 
in monsoon to 2.479 in winter. So, it indicates 
relatively homogeneous positive effect for the 
extreme rainfall over the basin for all seasons. 
This could be due to the presence of the most 
dominant factor, Relative humidity or Air surface 

temperature. Sea level pressure with single 
component has the smallest effect on the 
extreme rainfall and has almost similar negative 
effect on it in winter (OR=.322) and post
monsoon (OR=.210). It means that
slowly from one season to another. U
its two components has almost homogenous 
positive effect on the extreme rainfall with odds 
ratios ranging from 1.713 (for annual) to 2.632 
(for monsoon). The seasonal variation of this 
predictor seems smaller compared to Relati
humidity and Air surface temperature. But the 
spatial variation is found to be strong at its 
components present in the models. Similarly, V
wind has three components wit
ranging from 1.602 for annual model to 2.082 for 
monsoon. This predictor has similar character as 
it is for U-wind. However, it show a significant 
negative effect on the extreme rainfall (OR=.599) 
in post-monsoon. This may be due to strong 
seasonal effect.  

 

winter  
 

Fig. 2b. For pre-monsoon  
 

 

monsoon  Fig. 2d. For post -monsoon  
 

plot of Standardized Deviance Residual against pred icted value of linear 
predictor
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humidity and Air surface temperature. But the 
spatial variation is found to be strong at its 
components present in the models. Similarly, V-
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Table 3a. A goodness of Fit Test for a rainfall occ urrence: Wet day/Dry day 
 

Model  No. of 
predictor 

    Deviance           HL test  AIC BIC ‘c’ for training 
period 

‘c’ for validation 
period -2LL df  χ

2 (df =8)  Sig  
Winter 5 659.36 1804 7.824 .451 671.36 704.36 .839*** .876*** 
Pre-monsoon 6 1612.34 1828 11.258 .188 1626.34 1664.95 .847*** .827*** 
Monsoon 6 1669.41 2433 7.312 .503 1683.41 1724.01 .812*** .720*** 
Post-monsoon 6 794.59 1214 3.916 .865 806.59 837.23 .807*** .842** 

Note: df stands for degrees of freedom 
 

Table 3b. A goodness of Fit Test for a rainfall occ urrence: Extreme/higher Rainfall Day 
 

Model  No. of 
predictor 

    Deviance        HL test  AIC BIC % of accurate classification 
for periods 

-2LL df  χ
2 (df=8) Sig  Training  Validation  

Winter 4 219.899 1805 6.447 .597 229.899 257.404 98.3*** 98.1*** 
Pre-monsoon 4 294.664 1830 7.089 .527 304.664 332.238 98.0*** 98.0*** 
Monsoon 5 373.668 2434 10.910 .207 385.668 440.467 98.0*** 97.3*** 
Post-monsoon 4 138.455 1215 7.825 .451 148.455 173.988 98.1*** 97.3*** 
Annual 7 970.125 7297 3.327 .912 986.125 1041.30 98.0*** 97.1*** 

Note: ‘c’ stands for index of concordance or measure of area under curve (AUC) in ROC analysis.  HL refers to Hosmer and Lemeshow test. * 
*P< 0.05, **P< 0.01 and ***P< 0.001 for Table 3(a) and (b). 

Note: df stands for degrees of freedom 
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Table 4a. Coefficient table for a rainfall occurren ce: *Wet / Dry day 
 

Predictors          Winter     Pre-monsoon       Monsoon    Post -monsoon  
B (S.E.) OR B (S.E.) OR B (S.E.) OR B (S.E.) OR 

Geopotential height1 --- --- --- --- -.891*** 

(.104) 
.410 -.676*** 

(.203) 
.509 

Relative humidity1 1.414*** 

(.161) 
4.112 1.236*** 

(.111) 
3.443 1.176*** 

(.098) 
3.241 .738*** 

(168) 
2.092 

Relative humidity2 1.050*** 

(.203) 
2.857 1.167*** 

(.114) 
3.213 1.281*** 

(.132) 
3.601 --- --- 

Sea level pressure1 -.862*** 

(.228) 
.422 -1.217*** 

(.145) 
.296 --- --- --- --- 

Air surface  
temperature1 

-1.069*** 

(.333) 
.343 -0.581*** 

(.181) 
.559 --- --- 1.560*** 

(.241) 
4.757 

Air surface  
temperature 2 

--- --- --- --- --- --- 1.005*** 

(.319) 
2.73 

Precipitation flux1 .680*** 

(.193) 
1.973 --- --- --- --- .467*** 

(.149) 
1.595 

U-wind1 --- --- -0.531*** 

(.097) 
.588 --- --- --- --- 

U- wind2 --- --- --- --- -.276*** 

(.082) 
.759 --- --- 

V- wind2 --- --- .535*** 

(.103) 
1.707 --- --- --- --- 

V- wind3 --- --- --- --- -.185*** 

(.062) 
.831 --- --- 

Constant -2.220*** 

(.448) 
.109 -0.544*** 

(.159) 
.580 -.721*** 

(.140) 
.486 -.867*** 

(.200) 
.420 

*The procedure models treated Dry day as the reference category.  
OR stands for Odds ratio 
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Table 4b. Coefficient table for a rainfall occurren ce: *Extreme/higher Rainfall day 
 

Predictors         Annual         Winter    Pre-monsoon      Monsoon  Post -monsoon  
B (S.E.) OR B (S.E.) OR B (S.E.) OR B (S.E.) OR B (S.E.) OR 

Relative humidity1 1.023*** 
(.2696) 

2.781 1.920*** 
(.281) 

6.820 1.624*** 
(.346) 

5.076 --- --- 1.490** 
(.482) 

4.435 

Relative humidity2 1.159*** 
(.3296) 

3.186 --- --- 1.019*** 
(.295) 

2.770 --- --- 2.001*** 
(.492) 

7.395 

Sea level pressure1 --- --- -1.134** 
(.400) 

.322 --- --- --- --- -1.560* 
(.684) 

.210 

Air surface  
temperature1 

.698* 
(.3018) 

2.010 --- --- --- --- 1.973*** 
(.549) 

7.194 --- --- 

Air surface  
temperature2 

--- --- --- --- 1.008*** 
(.334) 

2.740 --- --- --- --- 

Precipitation flux1 .152** 
(.0548) 

1.165 1.367*** 
(.234) 

2.479 --- --- .195** 
(.075) 

1.215 --- --- 

Precipitation flux2 --- --- --- --- .705** 
(.308) 

2.024 --- --- --- --- 

U-wind1 .765*** 
(.0851) 

2.149 .665** 
(.314) 

1.944 --- --- .968*** 
(.149) 

2.632 --- --- 

U-wind2 .538*** 
(.1497) 

1.713 --- --- --- --- .699** 
(.270) 

2.011 --- --- 

V- wind1 .471*** 
(.1163) 

1.602 --- --- --- --- .733*** 
(.207) 

2.082 --- --- 

V- wind3 --- --- --- --- --- --- --- --- -.512* 
(.266) 

.599 

Constant -6.098*** 
(.3154) 

0.002 -3.903*** 
(.458) 

.020 -4.160*** 
(.458) 

.016 -7.329*** 
(.803) 

.001 -3.941*** 
(.524) 

.019 

98th percentile 36.66 6.35 17.38 57.11 16.75 
*The procedure models treated No Extreme rainfall day as the reference category 

Test-statistic is Wald test with significant p-values: *P< 0.05, **P< 0.01 and ***P< 0.001 for Table 4(a) and (b). 
OR stands for Odds ratio, which is given by Exp(B) in the above table 
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With consideration of the effect of the Relative 
humidity with its two components on the rainfall 
occurrence, review of literatures show a 
significant positive correlation between the 
precipitation and the relative humidity. For 
instance, Gerapetritis H [35] reported the positive 
correlation between them while using the 
FRH/FRHT data. It is also agreed by the report of 
Roy et al. [36], which revealed the positive effect 
of afternoon relative humidity on the precipitation 
event provided other predictors in logistic model. 
Like Relative humidity, Precipitation flux has also 
the same nature in influencing the rainfall 
occurrence along with its two components in all 
the seasons. On examining its two components, 
Air surface temperature2 mostly belong to 
latitude of 25° N along longitude of 82.5°– 87.5° 
E while its first component belonging to latitude 
of 27.5° – 30°N along longitude of 82.5°– 87.5° 
E. The former predictor reveals higher loadings 
to lower part (southern) of Nepal, especially Terai 
region, and the latter predictor shows higher 
loadings to upper/middle (northern) part of Nepal, 
especially Hill or Mountain regions. According to 
the report of Department of Hydrology and 
Meteorology in Nepal, the region closer to Indian 
boarder receives about 1500 mm rain in a year 
[37]. This fact verifies that the rainfall happens 
more in Terai than in Mountain. This is a strong 
evidence of spatial variation of this predictor 
affecting the rainfall occurrence mostly in 
monsoon season. 
 
While reviewing the literatures, Gerapetritis H, 
also [35] evidenced that there was significant 
negative correlation with sea level pressure using 
the FRH/FRHT data. Furthermore, Roy et al. [36] 
reported in his logistic regression model that 
there was negative effect of maximum 
temperature and positive effect of minimum 
temperature with the precipitation event. Filho     
et al. [27] showed that the rainfall pattern was 
highly positively and significantly associated with 
relative humidity, maximum temperature and V-
Wind component in the logistic regression model 
used in the northern Brazil. All these literatures 
agree with results of the study. Similarly, Khalil  
et al. had developed relationship between 
Precipitation and Temperature over the 80-year 
period from 1905 to 1984 at nearly 1000 stations 
in United States. He found that over most of the 
United States, summer precipitation and 
temperature were negatively correlated with 
indication of warm summers tended to be dryer 
in the central and southern Great Plains and a 
significant positive correlation between them over 
the area south of the Great Lakes covering the 

eastern portion of the Corn Belt in winter [30]. 
This supports the fact that the relation between 
the precipitation and temperature may change 
with season or place. Further, Trenberth et al. 
[38] found negative correlation between 
precipitation and surface temperature over land 
during summer and positive correlation at high 
latitudes in winter. He also added that ocean 
conditions drive the atmosphere with higher 
surface air temperature positively associated with 
precipitation. Kutiel et al. [39] shows that 
relationship between rainfall in Turkey and the 
regional sea level pressure is large in winter and 
non-existing in summer. Pressure patterns 
associated with dry conditions, showed usually 
positive departure, whereas, pressure associated 
with wet conditions showed negative sea level 
pressure. Prasad et al. (2010) demonstrated that 
the rainfall had significant positive correlation 
with V-Wind and negative correlation with U-wind 
when the logistic regression model was used to 
relate them on the basis of realizations obtained 
for whole India [26]. All these literatures are 
found to have more or less similar findings as 
obtained in the present study and the similar 
pattern of relationship of both rainfall 
occurrences with the predictors present in the 
fitted and validated models. Therefore, the major 
findings of this study are the significant effects of 
the predictors on the rainfall occurrence with 
presence of both spatial and seasonal variation 
over the basin. 
 

4. CONCLUSION 
 
This study has developed nine separate binary 
logistic regression models for the two rainfall 
occurrence (i) wet/dry day and (ii) the 
extreme/higher rainfall day given different 
components of seven climate predictor variables. 
All the models are good fit to the binary logistic 
models tested from Hosmer-Lemeshow statistics 
and Deviance statistic. These models have only 
included a number of significant predictors tested 
by Wald statistic. ROC and AUC have validated 
that all the models perform well in prediction of 
the rainfall occurrence. Components of Relative 
humidity are found to show a greater influence in 
predicting the rainfall occurrence mostly on 
winter for the wet day and on post-monsoon for 
the extreme rainfall day although the effect is 
found greatest due to Air surface temperature in 
monsoon for the extreme rainfall. Further 
Geopotential height and Sea level pressure 
depict negative association with the rainfall. But 
V-wind and U-wind show mostly positive 
association in most the models and negative 
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association in few models. The degree and 
direction of impact of those predictors are found 
to vary from season to season. This evidenced 
that their impacts may vary from one season to 
another in predicting the rainfall occurrence.  
Finally, it is concluded that all the nine separate 
logistic models are applicable to downscale the 
rainfall occurrence for different seasons or year 
given those predictors in future.  Therefore, the 
models can be applied as one of statistical 
downscaling techniques to assess the impact of 
climate change on the rainfall occurrence in the 
future at the Bagmati River basin in Nepal based 
on the outputs of general circulation models. 
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